Skip to main content
Log in

Flexible thermocells for utilization of body heat

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Plastic thermo-electrochemical cells (thermocells) involving aqueous potassium ferricyanide/ferrocyanide electrolyte have been investigated as an alternative to conventional thermoelectrics for thermal energy harvesting. Plastic thermocells that consist of all pliable materials such as polyethylene terephthalate (PET), fabrics, and wires are flexible enough to be wearable on the human body and to be wrapped around cylindrical shapes. The performance of the thermocells is enhanced by incorporating carbon nanotubes into activated carbon textiles, due to improved charge transfer at the interface. In cold weather conditions (a surrounding temperature of 5 °C), the thermocell generates a short-circuit current density of 0.39 A/m2 and maximum power density of 0.46 mW/m2 from body heat (temperature of 36 °C). For practical use, we have shown that the thermocell charges up a capacitor when worn on a T-shirt by a person. We also have demonstrated that the electrical energy generated from waste pipe heat using a serial array of the thermocells and voltage converters can power a typical commercial light emitting diode (LED).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Qi, Y.; McAlpine, M. C. Nanotechnology-enabled flexible and biocompatible energy harvesting. Energy Environ. Sci. 2010, 3, 1275–1285.

    Article  Google Scholar 

  2. Hirai, T.; Shindo, K.; Ogata, T. Charge and discharge characteristics of thermochargeable galvanic cells with an [Fe(CN)6] 4 /[Fe(CN)6]3-redox couple. J. Electrochem. Soc. 1996, 143, 1305–1313.

    Article  Google Scholar 

  3. Vullers, R. J. M.; van Schaijk, R.; Doms, I.; Van Hoof, C.; Mertens, R. Micropower energy harvesting. Solid-State Electron. 2009, 53, 684–693.

    Article  Google Scholar 

  4. Leonov, V.; Torfs, T.; Fiorini, P.; Van Hoof, C. Thermoelectric converters of human warmth for self-powered wireless sensor nodes. IEEE Sens. J. 2007, 7, 650–657.

    Article  Google Scholar 

  5. Aydin, E. A.; Güler, I. Recent advances on body-heat powered medical devices. Recent Patents on Biomedical Engineering 2011, 4, 33–37.

    Article  Google Scholar 

  6. Snyder, G. J.; Lim, J. R.; Huang, C. K.; Fleurial, J. P. Thermoelectric microdevice fabricated by a MEMS-like electrochemical process. Nat. Mater. 2003, 2, 528–531.

    Article  Google Scholar 

  7. Weber, J.; Potje-Kamloth, K.; Haase, F.; Detemple, P.; Völklein, F.; Doll, T. Coin-size coiled-up polymer foil thermoelectric power generator for wearable electronics. Sensor. Actuat. A-Phys. 2006, 132, 325–330.

    Article  Google Scholar 

  8. Kraemer, D.; Poudel, B.; Feng, H. P.; Caylor, J. C.; Yu, B.; Yan, X.; Ma, Y.; Wang, X.; Wang, D.; Muto, A., et al. High-performance flat-panel solar thermoelectric generators with high thermal concentration. Nat. Mater. 2011, 10, 532–538.

    Article  Google Scholar 

  9. Settaluri, K. T.; Lo, H. Y.; Ram, R. J. Thin thermoelectric generator system for body energy harvesting. J. Electron. Mater. 2012, 41, 984–988.

    Article  Google Scholar 

  10. Hewitt, C. A.; Kaiser, A. B.; Roth, S.; Craps, M.; Czerw, R.; Carroll, D. L. Multilayered carbon nanotube/polymer composite based thermoelectric fabrics. Nano Lett. 2012, 12, 1307–1310.

    Article  Google Scholar 

  11. Abraham, T. J.; MacFarlane, D. R.; Pringle, J. M. Seebeck coefficients in ionic liquids-prospects for thermo-electrochemical cells. Chem. Commun. 2011, 47, 6260–6262.

    Article  Google Scholar 

  12. Snyder, G. J.; Toberer, E. S. Complex thermoelectric materials. Nat. Mater. 2008, 7, 105–114.

    Article  Google Scholar 

  13. Vining, C. B. An inconvenient truth about thermoelectrics. Nat. Mater. 2009, 8, 83–85.

    Article  Google Scholar 

  14. Quickenden, T. I.; Vernon, C. F. Thermogalvanic conversion of heat to electricity. Sol. Energy 1986, 36, 63–72.

    Article  Google Scholar 

  15. Mua, Y.; Quickenden, T. I. Power conversion efficiency, electrode separation, and overpotential in the ferricyanide/ferrocyanide thermogalvanic cell. J. Electrochem. Soc. 1996, 143, 2558–2564.

    Article  Google Scholar 

  16. Hu, R.; Cola, B. A.; Haram, N.; Barisci, J. N.; Lee, S.; Stoughton, S.; Wallace, G.; Too, C.; Thomas, M.; Gestos, A., et al. Harvesting waste thermal energy using a carbonnanotube-based thermo-electrochemical cell. Nano Lett. 2010, 10, 838–846.

    Article  Google Scholar 

  17. Nightingale, E. R. Phenomenological theory of ion solvation. Effective radii of hydrated ions. J. Phys. Chem. 1959, 63, 1381–1387.

    Article  Google Scholar 

  18. Burrows, B. Discharge behavior of redox thermogalvanic cells. J. Electrochem. Soc. 1976, 123, 154–159.

    Article  Google Scholar 

  19. Morais, E. A. D.; Alvial, G.; Longuinhos, R.; Figueiredo, J. M. A.; Lacerda, R. G.; Ferlauto, A. S.; Ladeira, L. O. Enhanced electrochemical activity using vertically aligned carbon nanotube electrodes grown on carbon fiber. Mater. Res. 2011, 14, 403–407.

    Article  Google Scholar 

  20. Kim, J. I.; Park, S. J. A study of ion charge transfer on electrochemical behaviors of poly(vinylidene fluoride)-derived carbon electrodes. J. Anal. Appl. Pyrol. 2012, 98, 22–28.

    Article  Google Scholar 

  21. Juan, Y.; Ke, Q. Preparation of activated carbon by chemical activation under vacuum. Environ. Sci. Technol. 2009, 43, 3385–3390.

    Article  Google Scholar 

  22. Babel, K.; Jurewicz, K. KOH activated carbon fabrics as supercapacitor material. J. Phys. Chem. Solids 2004, 65, 275–280.

    Article  Google Scholar 

  23. Bao, L.; Li, X. Towards textile energy storage from cotton T-shirts. Adv. Mater. 2012, 24, 3246–3252.

    Article  Google Scholar 

  24. Lota, G.; Fic, K.; Frackowiak, E. Carbon nanotubes and their composites in electrochemical applications. Energ. Environ. Sci. 2011, 4, 1592–1605.

    Article  Google Scholar 

  25. Kang, T. J.; Choi, A.; Kim, D. H.; Jin, K.; Seo, D. K.; Jeong, D. H.; Hong, S. H.; Park, Y. W.; Kim, Y. H. Electromechanical properties of CNT-coated cotton yarn for electronic textile applications. Smart Mater. Struct. 2011, 20, 015004.

    Google Scholar 

  26. Cheng, Q.; Tang, J.; Ma, J.; Zhang, H.; Shinya, N.; Qin, L. C. Graphene and carbon nanotube composite electrodes for supercapacitors with ultra-high energy density. Phys. Chem. Chem. Phys. 2011, 13, 17615–17624.

    Article  Google Scholar 

  27. Hu, L.; Pasta, M.; Mantia, F. L.; Cui, L.; Jeong, S.; Deshazer, H. D.; Choi, J. W.; Han, S. M.; Cui, Y. Stretchable, porous, and conductive energy textiles. Nano Lett. 2010, 10, 708–714.

    Article  Google Scholar 

  28. Nugent, J. M.; Santhanam, K. S. V.; Rubio, A.; Ajayan, P. M. Fast electron transfer kinetics on multiwalled carbon nanotube microbundle electrodes. Nano Lett. 2001, 1, 87–91.

    Article  Google Scholar 

  29. Saliba, R.; Agricole, B.; Mingotaud, C.; Ravaine, S. Voltammetric and impedance analysis of dimethyldioctadecylammonium/Prussian blue Langmuir-Blodgett films on ITO electrodes. J. Phys. Chem. B 1999, 103, 9712–9716.

    Article  Google Scholar 

  30. Xiao, Y.; Lin, J. Y.; Tai, S. Y.; Chou, S. W.; Yue, G.; Wu, J. Pulse electropolymerization of high performance PEDOT/ MWCNT counter electrodes for Pt-free dye-sensitized solar cells. J. Mater. Chem. 2012, 22, 19919–19925.

    Article  Google Scholar 

  31. Kang, T. J.; Fang, S. L.; Kozlov, M. E.; Haines, C. S.; Li, N.; Kim, Y. H.; Chen, Y. S.; Baughman, R. H. Electrical power from nanotube and graphene electrochemical thermal energy harvesters. Adv. Funct. Mater. 2012, 22, 477–489.

    Article  Google Scholar 

  32. Curtiss, C. F.; Bird, R. B. Multicomponent diffusion. Ind. Eng. Chem. Res. 1999, 38, 2515–2522.

    Article  Google Scholar 

  33. Eastman, E. D. Theory of the soret effect. J. Am. Chem. Soc. 1928, 50, 283–291.

    Article  Google Scholar 

  34. Eastman, E. D. Thermodynamics of non-isothermal systems. J. Am. Chem. Soc. 1926, 48, 1482–1493.

    Article  Google Scholar 

  35. deBethune, A. J.; Licht, T. S.; Swendeman, N. The temperature coefficients of electrode potentials: The isothermal and thermal coefficients-the standard ionic entropy of electrochemical transport of the hydrogen ion. J. Electrochem. Soc. 1959, 106, 616–625.

    Article  Google Scholar 

  36. Lu, X.; Xiao, Y.; Lei, Z.; Chen, J. Graphitized macroporous carbon microarray with hierarchical mesopores as host for the fabrication of electrochemical biosensor. Biosens. Bioelectron. 2009, 25, 244–247.

    Article  Google Scholar 

  37. Zhao, J.; Cheng, F.; Yi, C.; Liang, J.; Tao, Z.; Chen, J. Facile synthesis of hierarchically porous carbons and their application as a catalyst support for methanol oxidation. J. Mater. Chem. 2009, 19, 4108–4116.

    Article  Google Scholar 

  38. Wang, Z.; Kiesel, E. R.; Stein, A. Silica-free syntheses of hierarchically ordered macroporous polymer and carbon monoliths with controllable mesoporosity. J. Mater. Chem. 2008, 18, 2194–2200.

    Article  Google Scholar 

  39. Deng, Y.; Liu, C.; Yu, T.; Liu, F.; Zhang, F.; Wan, Y.; Zhang, L.; Wang, C.; Tu, B.; Webley, P. A., et al. Facile synthesis of hierarchically porous carbons from dual colloidal crystal/bock copolymer template approach. Chem. Mater. 2007, 19, 3271–3277.

    Article  Google Scholar 

  40. Li, Y.; Fu, Z. Y.; Su, B. L. Hierarchically structured porous materials for energy conversion and storage. Adv. Funct. Mater. 2012, 22, 4634–4667.

    Article  Google Scholar 

  41. Romano, M. S.; Li, N.; Antiohos, D.; Razal, J. M.; Nattestad, A.; Beirne, S.; Fang, S.; Chen, Y.; Jalili, R.; Wallace, G. G., et al. Carbon nanotube-reduced graphene oxide composites for thermal energy harvesting applications. Adv. Mater. 2013, 25, 6602–6606.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tae June Kang or Yong Hyup Kim.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Im, H., Moon, H.G., Lee, J.S. et al. Flexible thermocells for utilization of body heat. Nano Res. 7, 443–452 (2014). https://doi.org/10.1007/s12274-014-0410-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0410-6

Keywords

Navigation