Skip to main content
Log in

Writing with atoms: Oxygen adatoms on the MoO2/Mo(110) surface

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Writing at the nanoscale using the desorption of oxygen adatoms from the oxygen-rich MoO2+x /Mo(110) surface is demonstrated by scanning tunnelling microscopy (STM). High-temperature oxidation of the Mo(110) surface results in a strained, bulk-like MoO2(010) ultra-thin film with an O-Mo-O trilayer structure. Due to the lattice mismatch between the Mo(110) and the MoO2(010), the latter consists of well-ordered molybdenum oxide nanorows separated by 2.5 nm. The MoO2(010)/Mo(110) structure is confirmed by STM data and density functional theory calculations. Further oxidation results in the oxygen-rich MoO2+x /Mo(110) surface, which exhibits perfectly aligned double rows of oxygen adatoms, imaged by STM as bright protrusions. These adatoms can be removed from the surface by scanning (or pulsing) at positive sample biases greater than 1.5 V. Tip movement along the surface can be used for controlled lithography (or writing) at the nanoscale, with a minimum feature size of just 3 nm. By moving the STM tip in a predetermined fashion, information can be written and read by applying specific biases between the surface and the tip.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Binnig, G.; Rohrer, H.; Gerber, C.; Weibel, E. Surface studies by scanning tunnelling microscopy. Phys. Rev. Lett. 1982, 49, 57–61.

    Article  ADS  Google Scholar 

  2. Ringger, M.; Hidber, H. R.; Schlögl, R.; Oelhafen, P.; Güntherodt, H. J. Nanometer lithography with the scanning tunnelling microscope. Appl. Phys. Lett. 1985, 46, 832.

    Article  CAS  ADS  Google Scholar 

  3. Staufer, U.; Wiesendanger, R.; Eng, L.; Rosenthaler, L.; Hidber, H. R.; Güntherodt, H. J.; Garcia, N. Nanometer scale structure fabrication with the scanning tunneling microscope. Appl. Phys. Lett. 1987, 51, 244.

    Article  CAS  ADS  Google Scholar 

  4. Eigler, D. M.; Schweizer, E. K. Positioning single atoms with a scanning tunnelling microscope. Nature 1990, 344, 524–526.

    Article  CAS  ADS  Google Scholar 

  5. Stroscio, J. A.; Eigler, D. M. Atomic and molecular manipulation with the scanning tunneling microscope. Science 1991, 254, 1319–1326.

    Article  PubMed  CAS  ADS  Google Scholar 

  6. Zeppenfeld, P.; Lutz, C. P.; Eigler, D. M. Manipulating atoms and molecules with a scanning tunneling microscope. Ultramicroscopy 1992, 42, 128–133.

    Article  Google Scholar 

  7. Walsh, M. A.; Hersam, M. C. Atomic-scale templates patterned by ultrahigh vacuum scanning tunnelling microscopy on silicon. Annu. Rev. Phys. Chem. 2009, 60, 193–216.

    Article  PubMed  CAS  ADS  Google Scholar 

  8. Crommie, M. F.; Lutz, C. P.; Eigler, D. M. Confinement of electrons to quantum corrals on a metal surface. Science 1993, 262, 218–220.

    Article  PubMed  CAS  ADS  Google Scholar 

  9. Pires, D.; Hedrick, J. L.; De Silva, A.; Frommer, J.; Gotsmann, B.; Wolf, H.; Despont, M.; Duerig, U.; Knoll, A. W. Nanoscale three-dimensional patterning of molecular resists by scanning probes. Science 2010, 328, 732–735.

    Article  PubMed  CAS  ADS  Google Scholar 

  10. Wei, Z. Q.; Wang, D. B.; Kim, S.; Kim, S. Y.; Hu, Y.; Yakes, M. K.; Laracuente, A. R.; Dai, Z. T.; Marder, S. R.; Berger, C. et al. Nanoscale tunable reduction of graphene oxide for graphene electronics. Science 2010, 328, 1373–1376.

    Article  PubMed  CAS  ADS  Google Scholar 

  11. Sugimura, H.; Kitamura, N.; Masuhara, H. Modification of n-Si(100) surface by scanning tunnelling microscope tip-induced anodization under nitrogen atmosphere. Jpn. J. Appl. Phys. 1994, 33, L143–L145.

    Article  ADS  Google Scholar 

  12. Mühl, T.; Brückl, H.; Weise, G.; Reiss, G. Nanometer-scale lithography in thin carbon layers using electric field assisted scanning force microscopy. J. Appl. Phys. 1997, 82, 5255.

    Article  ADS  Google Scholar 

  13. Kolb, D. M.; Ullmann, R.; Will, T. Nanofabrication of small copper clusters on gold(111) electrodes by a scanning tunnelling microscope. Science 1997, 275, 1097–1099.

    Article  PubMed  CAS  Google Scholar 

  14. Piner, R. D.; Zhu, J.; Xu, F.; Hong, S.; Mirkin, C. A. “Dip-Pen” nanolithography. Science 1999, 283, 661–663.

    Article  PubMed  CAS  Google Scholar 

  15. Sugimura, H.; Nakagiri, N. Chemical approach to nanofabrication: Modifications of silicon surfaces patterned by scanning probe anodization. Jpn. J. Appl. Phys. 1995, 34, 3406–3411.

    Article  CAS  ADS  Google Scholar 

  16. Sakurai, M.; Thirstrup, C.; Aono, M. Nanoscale growth of silver on prepatterned hydrogen-terminated Si(001) surfaces. Phys. Rev. B 2000, 62, 16167–16174.

    Article  CAS  ADS  Google Scholar 

  17. Wei, Y. M.; Zhou, X. S.; Wang, J. G.; Tang, J.; Mao, B. W.; Kolb, D. M. The creation of nanostructures on an Au(111) electrode by tip-induced iron deposition from an ionic liquid. Small 2008, 4, 1355–1358.

    Article  PubMed  CAS  Google Scholar 

  18. Hallam, T.; Reusch, T. C. G.; Oberbeck, L.; Curson, N. J.; Simmons, M. Y. Scanning tunneling microscope based fabrication of nano- and atomic scale dopant devices in silicon: The crucial step of hydrogen removal. J. Appl. Phys. 2007, 101, 034305.

    Article  ADS  Google Scholar 

  19. Cen, C.; Thiel, S.; Mannhart, J.; Levy, J. Oxide nanoelectronics on demand. Science 2009, 323, 1026–1030.

    Article  PubMed  CAS  ADS  Google Scholar 

  20. Hartwich, J.; Dreeskornfeld, L.; Heisig, V.; Rahn, S.; Wehmeyer, O.; Kleineberg, U.; Heinzmann, U. STM writing of artificial nanostructures in ultrathin PMMA and SAM resists and subsequent pattern transfer in a Mo/Si multilayer by reactive ion etching. Appl. Phys. A 1998, 66, S685–S688.

    Article  CAS  ADS  Google Scholar 

  21. Krasnikov, S. A.; Murphy, S.; Berdunov, N.; McCoy, A. P.; Radican, K.; Shvets, I. V. Self-limited growth of triangular PtO2 nanoclusters on the Pt(111) surface. Nanotechnology 2010, 21, 335301.

    Article  PubMed  CAS  ADS  Google Scholar 

  22. Krasnikov, S. A.; Bozhko, S. I.; Radican, K.; Lübben, O.; Murphy, B. E.; Vadapoo, S. R.; Wu, H. C.; Abid, M.; Semenov, V. N.; Shvets, I. V. Self-assembly and ordering of C60 on the WO2/W(110) surface. Nano Res. 2011, 4, 194–203.

    Article  CAS  Google Scholar 

  23. Laursen, S.; Linic, S. Oxidation catalysis by oxide-supported Au nanostructures: The role of supports and the effect of external conditions. Phys. Rev. Lett. 2006, 97, 026101.

    Article  PubMed  ADS  Google Scholar 

  24. Santra, A. K.; Goodman, D. W. Oxide-supported metal clusters: Models for heterogeneous catalysts. J. Phys. Condens. Matter 2003, 15, R31–R62.

    Article  CAS  ADS  Google Scholar 

  25. Chaika, A. N.; Nazin, S. S.; Semenov, V. N.; Bozhko, S. I.; Lübben, O.; Krasnikov, S. A.; Radican, K.; Shvets, I. V. Selecting the tip electron orbital for scanning tunneling microscopy imaging with sub-Ångström lateral resolution. EPL 2010, 92, 46003.

    Article  ADS  Google Scholar 

  26. Chaika, A. N.; Nazin, S. S.; Semenov, V. N.; Orlova, N. N.; Bozhko, S. I.; Lübben, O.; Krasnikov, S. A.; Radican, K.; Shvets, I. V. High resolution STM imaging with oriented single crystalline tips. Appl. Surf. Sci. 2013, 267, 219–223.

    Article  CAS  ADS  Google Scholar 

  27. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    Article  CAS  ADS  Google Scholar 

  28. Ceperley, D. M.; Alder, B. J. Ground state of the electron gas by a stochastic method. Phys. Rev. Lett. 1980, 45, 566–569.

    Article  CAS  ADS  Google Scholar 

  29. Radican, K.; Berdunov, N.; Manai, G.; Shvets, I. V. Epitaxial molybdenum oxide grown on Mo(110): LEED, STM, and density functional theory calculations. Phys. Rev. B 2007, 75, 155434.

    Article  ADS  Google Scholar 

  30. Radican, K.; Berdunov, N.; Shvets, I. V. Studies of the periodic faceting of epitaxial molybdenum oxide grown on Mo(110). Phys. Rev. B 2008, 77, 085417.

    Article  ADS  Google Scholar 

  31. Lübben, O.; Krasnikov, S. A.; Preobrajenski, A. B.; Murphy, B. E.; Bozhko, S. I.; Arrora, S. K.; Shvets, I. V. Self-assembly of Fe nanocluster arrays on templated surfaces. J. Appl. Phys. 2012, 111, 07B515.

    Google Scholar 

  32. Shen, T. C.; Wang, C.; Abeln, G. C.; Tucker, J. R.; Lyding, J. W.; Avouris, Ph.; Walkup, R. E. Atomic-scale desorption through electronic and vibrational excitation mechanisms. Science 1995, 268, 1590–1592.

    Article  PubMed  CAS  ADS  Google Scholar 

  33. Stipe, B. C.; Rezaei, M. A.; Ho, W.; Gao, S.; Persson, M.; Lundqvist, B. I. Single-molecule dissociation by tunneling electrons. Phys. Rev. Lett. 1997, 78, 4410–4413.

    Article  CAS  ADS  Google Scholar 

  34. Stroscio, J. A.; Celotta, R. J. Controlling the dynamics of a single atom in lateral atom manipulation. Science 2004, 306, 242–247.

    Article  PubMed  CAS  ADS  Google Scholar 

  35. Bozhko, S. I.; Krasnikov, S. A.; Lübben, O.; Murphy, B. E.; Radican, K.; Semenov, V. N.; Wu, H. C.; Levchenko, E. A.; Chaika, A. N.; Sergeeva, N. N. et al. Correlation between charge-transfer and rotation of C60 on WO2/W(110). Nanoscale 2013, 5, 3380–3386.

    Article  PubMed  CAS  ADS  Google Scholar 

  36. Repp, J.; Meyer, G.; Olsson, F. E.; Persson, M. Controlling the charge state of individual gold adatoms. Science 2004, 305, 493–495.

    Article  PubMed  CAS  ADS  Google Scholar 

  37. Gadzuk, J. W. Resonance-assisted, hot-electron-induced desorption. Surf. Sci. 1995, 342, 345–358.

    Article  CAS  ADS  Google Scholar 

  38. Eigler, D. M.; Lutz, C. P.; Rudge, W. E. An atomic switch realized with the scanning tunnelling microscope. Nature 1991, 352, 600–603.

    Article  CAS  ADS  Google Scholar 

  39. Horcas, I.; Fernández, R.; Gómez-Rodriguez, J. M.; Colchero, J.; Gómez-Herrero, J.; Baro, A. M. WSXM: A software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 2007, 78, 013705.

    Article  PubMed  CAS  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey A. Krasnikov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krasnikov, S.A., Lübben, O., Murphy, B.E. et al. Writing with atoms: Oxygen adatoms on the MoO2/Mo(110) surface. Nano Res. 6, 929–937 (2013). https://doi.org/10.1007/s12274-013-0370-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-013-0370-2

Keywords

Navigation