Skip to main content
Log in

Nanoscale control of Ag nanostructures for plasmonic fluorescence enhancement of near-infrared dyes

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Potential utilization of proteins for early detection and diagnosis of various diseases has drawn considerable interest in the development of protein-based detection techniques. Metal induced fluorescence enhancement offers the possibility of increasing the sensitivity of protein detection in clinical applications. We report the use of tunable plasmonic silver nanostructures for the fluorescence enhancement of a near-infrared (NIR) dye (Alexa Fluor 790). Extensive fluorescence enhancement of ∼2 orders of magnitude is obtained by the nanoscale control of the Ag nanostructure dimensions and interparticle distance. These Ag nanostructures also enhanced fluorescence from a dye with very high quantum yield (7.8 fold for Alexa Fluor 488, quantum efficiency (Qy) = 0.92). A combination of greatly enhanced excitation and an increased radiative decay rate, leading to an associated enhancement of the quantum efficiency leads to the large enhancement. These results show the potential of Ag nanostructures as metal induced fluorescence enhancement (MIFE) substrates for dyes in the NIR “biological window” as well as the visible region. Ag nanostructured arrays fabricated by colloidal lithography thus show great potential for NIR dye-based biosensing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lakowicz, J. R. Plasmonics in biology and plasmon-controlled fluorescence. Plasmonics 2006, 1, 5–33.

    Article  CAS  Google Scholar 

  2. Lakowicz, J. R. Probe Design and Chemical Sensing; Plenum Press: New York, 1994; Vol. 4.

    Google Scholar 

  3. Luo, S.; Zhang, E.; Su, Y.; Cheng, T.; Shi, C. A review of NIR dyes in cancer targeting and imaging. Biomaterials 2011, 32, 7127–7138.

    Article  CAS  Google Scholar 

  4. Licha, K.; Riefke, B.; Ntziachristos, V.; Becker, A.; Chance, B.; Semmler, W. Hydrophilic cyanine dyes as contrast agents for near-infrared tumor imaging: Synthesis, photophysical properties and spectroscopic in vivo characterization. Photochem. Photobiol. 2000, 72, 392–398.

    Article  CAS  Google Scholar 

  5. Kronick, M. N. The use of phycobiliproteins as fluorescent labels in immunoassay. J. Immunol. Methods 1986, 92, 1–13.

    Article  CAS  Google Scholar 

  6. Daehne, S.; Resch-Genger, U.; Wolfbeis, O. S. Near-Infrared Dyes for High Technology Applications; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1998.

    Book  Google Scholar 

  7. Walker, N. J. Tech.Sight. A technique whose time has come. Science 2002, 296, 557–559.

    Article  CAS  Google Scholar 

  8. Xie, F.; Baker, M. S.; Goldys, E. M. Homogeneous silver-coated nanoparticle substrates for enhanced fluorescence detection. J. Phys. Chem. B 2006, 110, 23085–23091.

    Article  CAS  Google Scholar 

  9. Purcell, E. M.; Torrey H. C.; Pound R. V. Resonance absorption by nuclear magnetic moments in a solid. Phys. Rev. 1946, 69, 674.

    Article  Google Scholar 

  10. Dulkeith, E.; Ringler, M.; Klar, T. A.; Feldman, J.; Munoz Javier, A.; Parak, W. J. Gold nanoparticles quench fluorescence by phase induced radiative rate suppression. Nano Lett. 2005, 5, 585–589.

    Article  CAS  Google Scholar 

  11. Dulkeith, E.; Morteani, A. C.; Niedereichholz, T.; Klar, T. A.; Feldman, J.; Levi, S. A.; van Voggel, F. C. J. M.; Reinhoudt, D. N.; Moller, M.; Gittins, D. I. Fluorescence quenching of dye molecules near gold nanoparticles: Radiative and nonradiative effects. Phys. Rev. Lett. 2002, 89, 203002.

    Article  CAS  Google Scholar 

  12. Cannone, F.; Chirico, G.; Bizzari, A. R.; Cannistraro, S. Quenching and blinking of fluorescence of a single dye molecule bound to gold nanoparticles. J. Phys. Chem. B 2006, 110, 16491–16498.

    Article  CAS  Google Scholar 

  13. Pan, S. L.; Wang, Z. J.; Rothberg, L. J. Enhancement of adsorbed dye monolayer fluorescence by a silver nanoparticle overlayer. J. Phys. Chem. B 2006, 110, 17383–17387.

    Article  CAS  Google Scholar 

  14. Kulakovich, O.; Strekal, N.; Yaroschevich, A.; Maskevich, S.; Gaponenko, S.; Nabiev, L.; Woggon, U.; Artemyev, M. Enhanced luminescence of CdSe quantum dots on gold colloids. Nano Lett. 2002, 2, 1449–1452.

    Article  CAS  Google Scholar 

  15. Shimizu, K. T.; Woo, W. K.; Fisher, B. R.; Eisler, H. J.; Bawendi, M. G. Surface-enhanced emission from single semiconductor nanocrystals. Phys. Rev. Lett. 2002, 89, 117401.

    Article  CAS  Google Scholar 

  16. Lakowicz, J. R. Radiative decay engineering 5: Metal-enhanced fluorescence and plasmon emission. Anal. Biochem. 2005, 337, 171–194.

    Article  CAS  Google Scholar 

  17. Xie, F.; Centeno, A.; Ryan, M. P.; Riley, D. J.; Alford, N. M. Au nanostructures by colloidal lithography: from quenching to extensive fluorescence enhancement. J. Mater. Chem. B 2013, 1, 536–543.

    Article  CAS  Google Scholar 

  18. Bardhan, R.; Grady, N. K.; Cole, J. R.; Joshi, A.; Halas, N. J. Fluorescence enhancement by Au nanostructures: Nanoshells and nanorods. ACS Nano 2009, 3, 744–752.

    Article  CAS  Google Scholar 

  19. Tabakman, S. M.; Lau, L.; Robinson, J. T.; Price, J.; Sherlock, S. P.; Wang, H.; Zhang, B.; Chen, Z.; Tangsombatvisit, S.; Jarrell, J. A.; Utz, P. J.; Dai, H. Plasmonic substrates for multiplexed protein microarrays with femtomolar sensitivity and broad dynamic range. Nat. Commun. 2011, 2, 466.

    Article  Google Scholar 

  20. Wang, D.; Mohwald, H. Rapid fabrication of binary colloidal crystals by stepwise spin-coating. Adv. Mater. 2004, 16, 244–247.

    Article  CAS  Google Scholar 

  21. Zhou, L.; Ding, F.; Chen, H.; Ding, W.; Zhang, W.; Chou, S. Y. Enhancement of immunoassay’s fluorescence and detection sensitivity using three-dimensional plasmonic nano-antenna-dots array. Anal. Chem. 2012, 84, 4489–4495.

    Article  CAS  Google Scholar 

  22. Malicka, J.; Gryczynski, I.; Gryczynski, Z.; Lakowicz, J. R. Effects of fluorophore-to-silver distance on the emission of cyanine-dye-labeled oligonucleotides. J. Anal. Biochem. 2003, 315, 57–66.

    Article  CAS  Google Scholar 

  23. Bharadwaj, P.; Novotny, L. Spectral dependence of single molecule fluorescence enhancement. Opt. Express 2007, 15, 14266–14274.

    Article  CAS  Google Scholar 

  24. Anderson, J. P.; Griffiths, M.; Boveia, V. R. Near-infrared fluorescence enhancement using silver island films. Plasmonics 2006, 1, 103–110.

    Article  CAS  Google Scholar 

  25. Anderson, J. P.; Griffiths, M.; Williams, J. G.; Grone, D. L.; Lamb, D. L.; Boveia V. R. In Proceedings of SPIE 6641, Plasmonics: Metallic Nanostructures and Their Optical Properties V, San Diego, CA, 2007, 664108.

    Google Scholar 

  26. Geddes, C. D.; Cao, H.; Gryczynski, I.; Gryczynski, Z.; Fang, J.; Lakowicz, J. R. Metal-enhanced fluorescence (MEF) due to silver colloids on a planar surface: Potential applications of indocyanine green to in vivo imaging. J. Phys. Chem. A 2003, 107, 3443–3449.

    Article  CAS  Google Scholar 

  27. Danos, L.; Markvart, T. Excitation energy transfer rate from Langmuir Blodgett (LB) dye monolayers to silicon: Effect of aggregate formation. Chem. Phys. Lett. 2010, 490, 194–199.

    Article  CAS  Google Scholar 

  28. Taflove, A.; Hagness, S. C. Computational Electrodynamics: The Finite Difference Time-Domain Method, 3rd ed.; Artech House, 2005.

    Google Scholar 

  29. Rakic, A. D.; Djurisic, A. B.; Elavar, J. M.; Majewski, M. L. Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl. Opt. 1998, 37, 5271–5283.

    Article  CAS  Google Scholar 

  30. Centeno, A.; Xie F.; Alford, N. M. Light absorption and field enhancement in two-dimensional arrays of closely spaced silver nanoparticles. J. Opt. Soc. Am. B 2011, 28, 325–330.

    Article  CAS  Google Scholar 

  31. Oskooi, A. F.; Roundy, D.; Ibanescu, M.; Bermel, P.; Joannopoulos, J. D.; Johnson, S. G. Meep: A flexible free-software package for electromagnetic simulations by the FDTD method. Comput. Phys. Commun. 2010, 181, 687–702.

    Article  CAS  Google Scholar 

  32. Jain, P. K.; El-Say, M. A. Universal scaling of plasmon coupling in metal nanostructures: extension from particle pairs to nanoshells. Nano Lett. 2007, 7, 2854–2858.

    Article  CAS  Google Scholar 

  33. Kinkhabwala, A.; Yu, Z.; Fan, S.; Avlasevich, Y.; Mullen, K.; Moerner, W. E. Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna. Nat. Photonics 2009, 3, 654–657.

    Article  CAS  Google Scholar 

  34. Jensen, T. R.; Malinsky, M. D.; Haynes, C. L.; Van Duyne, R. P. Nanosphere lithography: Tunable localized surface plasmon resonance spectra of silver nanoparticles. J. Phys. Chem. B 2000, 104, 10549–10556.

    Article  CAS  Google Scholar 

  35. Centeno, A.; Xie F.; Alford, N. M. IET Nanobiotechnology 2013, IET digital library identifier: NBT-2012-0016.R1.

  36. Vukovic, S.; Corni, S.; Mennucci, B. Fluorescence enhancement of chromophores close to metal nanoparticles. Optimal setup revealed by the polarizable continuum model. J. Phys. Chem. C 2009, 113, 121–133.

    Article  CAS  Google Scholar 

  37. Centeno, A.; Xie, F.; Alford, N. M. A computational study of the coupled emissions between flurophores and gold triangular prism bow tie. In Progress In Electromagnetics Research Symposium Proceedings, KL, Malaysia, 2012, pp 765–767.

    Google Scholar 

  38. Tomsia, K.; Xie, F.; Goldys, E. Deposition of silver dentritic nanostructures on silicon for enhanced fluorescence. J. Phys. Chem. C 2010, 114, 1562–1569.

    Article  Google Scholar 

  39. Panchuk-Voloshina, N.; Haugland, R. P.; Bishop-Stewart, J.; Bhalgat, M. K.; Millard, P. J.; Mao, F.; Leung, W. Y.; Haugland, R. P. Alexa dyes, a series of new fluorescent dyes that yield exceptionally bright, photostable conjugates. J. Histochem. Cytochem. 1999, 47, 1179–1188.

    Article  CAS  Google Scholar 

  40. Sokolov, K.; Chumanov, G.; Cotton, T. M. Enhancement of molecular fluorescence near the surface of colloidal metal films. Anal. Chem. 1998, 70, 3898–3905.

    Article  CAS  Google Scholar 

  41. Draga, A. I.; Geddes, C. D. Metal-enhanced fluorescence: The role of quantum yield, Q 0, in enhanced fluorescence. Appl. Phys. Lett. 2012, 100, 093115.

    Article  Google Scholar 

  42. Lakowicz, J. R. Principles of Fluorescence Spectroscopy, 2nd ed.; Kluwer Academic/Plenum: New York, 1999; pp 95–184.

    Book  Google Scholar 

  43. Axelrod, D.; Hellen, E.; Fulbright, R. Total internal reflection fluorescence. In Topics in Fluorescence Spectroscopy, Vol. 3, Biochemical Applications. Lakowicz, J. R. Ed.; Plenum Press: New York, 2002; pp 289–343.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang Xie.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, F., Pang, J.S., Centeno, A. et al. Nanoscale control of Ag nanostructures for plasmonic fluorescence enhancement of near-infrared dyes. Nano Res. 6, 496–510 (2013). https://doi.org/10.1007/s12274-013-0327-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-013-0327-5

Keywords

Navigation