Skip to main content
Log in

High crystal quality wurtzite-zinc blende heterostructures in metal-organic vapor phase epitaxy-grown GaAs nanowires

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

We have prepared GaAs wurtzite (WZ)-zinc blende (ZB) nanowire heterostructures by Au particle-assisted metal-organic vapor phase epitaxy (MOVPE) growth. Superior crystal quality of both the transition region between WZ and ZB and of the individual segments themselves was found for WZ-ZB single heterostructures. Pure crystal phases were achieved and the ZB segments were found to be free of any stacking defects, whereas the WZ sections showed a maximum stacking fault density of 20 μm−1. The hexagonal cross-sectional wires are terminated by \(\left\{ {10\bar 10} \right\}\)-type side facets for the WZ segment and predominantly {110}-type side facets for the ZB part of the wire. A diameter increase occurred after the transition from WZ to ZB. Additionally, facets of the \(\left\{ {\bar 1\bar 1\bar 1} \right\}\)-type as well as downwards-directed overgrowth of the WZ segments were formed at the WZ to ZB transition to compensate for the observed diameter increase and facet rotation. In the case of WZ-ZB multiple heterostructures, we observed slightly higher densities of stacking faults and twin planes compared to single heterostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vpj, L.; Oh, J.; Nayak, A. P.; Katzenmeyer, A. M.; Gilchrist, K. H.; Grego, S.; Kobayashi, N. P.; Wang, S. -Y.; Talin, A. A.; Dhar, N. K. et al. A perspective on nanowire photodetectors: Current status, future challenges, and opportunities. IEEE J. Sel. Top. Quant. 2011, 17, 1002–1032.

    Article  Google Scholar 

  2. Sun, K; Kargar, A.; Park, N.; Madsen, K. N.; Naughton, P. W.; Bright, T.; Jing, Y.; Wang, D. Compound semiconductor nanowire solar cells. IEEE J. Sel. Top. Quant. 2011, 17, 1033–1049.

    Article  CAS  Google Scholar 

  3. Ganjipour, B.; Dey, A. W.; Borg, B. M.; Ek, M.; Pistol, M. -E.; Dick, K. A.; Wernersson, L. -E.; Thelander, C. High current density Esaki tunnel diodes based on GaSb-InAsSb heterostructure nanowires. Nano Lett. 2011, 11, 4222–4226.

    Article  CAS  Google Scholar 

  4. Tomioka, K.; Fukui, T. Tunnel field-effect transistor using InAs nanowire/Si heterojunction. Appl. Phys. Lett. 2011, 98, 083114.

    Article  Google Scholar 

  5. Björk, M. T.; Schmid, H.; Bessire, C. D.; Moselund, K. E.; Ghoneim, H.; Karg, S.; Lörtscher, E.; Riel, H. Si-InAs heterojunction Esaki tunnel diodes with high current densities. Appl. Phys. Lett. 2010, 97, 163501.

    Article  Google Scholar 

  6. Thelander, C.; Caroff, P.; Plissard, S.; Dey, A. W.; Dick, K. A. Effects of crystal phase mixing on the electrical properties of InAs nanowires. Nano Lett. 2011, 11, 2424–2429.

    Article  CAS  Google Scholar 

  7. Caroff, P.; Bolinsson, J.; Johansson, J. Crystal phases in III–V nanowires: From random toward engineered polytypism. IEEE J. Sel. Top. Quant. 2010, 17, 829–846.

    Article  Google Scholar 

  8. Schroer, M. D.; Petta, J. R. Correlating the nanostructure and electronic properties of InAs nanowires. Nano Lett. 2010, 10, 1618–1622.

    Article  CAS  Google Scholar 

  9. Dick, K. A.; Bolinsson, J.; Messing, M. E.; Lehmann, S.; Johansson, J.; Caroff, P. Parameter space mapping of InAs nanowire crystal structure. J. Vac. Sci. Technol. B 2011, 29, 04D103.

    Article  Google Scholar 

  10. Wacaser, B. A.; Deppert, K.; Karlsson, L. S.; Samuelson, L.; Seifert, W. Growth and characterization of defect free GaAs nanowires. J. Cryst. Growth 2006, 287, 504–508.

    Article  CAS  Google Scholar 

  11. Joyce, H. J.; Gao, Q.; Tan, H. H.; Jagadish, C.; Kim, Y.; Zhang, X.; Guo, Y.; Zou, J. Twin-free uniform epitaxial GaAs nanowires grown by a two-temperature process. Nano Lett. 2007, 7, 921–926.

    Article  CAS  Google Scholar 

  12. Joyce, H. J.; Gao, Q.; Tan, H. H.; Jagadish, C.; Kim, Y.; Fickenscher, M. A.; Perera, S.; Hoang, T. B.; Smith, L. M.; Jackson, H. E. et al. Unexpected benefits of rapid growth rate for III–V nanowires. Nano Lett. 2009, 9, 695–701.

    Article  CAS  Google Scholar 

  13. Plante, M. C.; LaPierre, R. R. Control of GaAs nanowire morphology and crystal structure. Nanotechnology 2008, 19, 495603.

    Article  CAS  Google Scholar 

  14. Shtrikman, H.; Popovitz-Biro, R.; Kretinin, A.; Heiblum, M. Stacking-faults-free zinc blende GaAs nanowires. Nano Lett. 2009, 9, 215–219.

    Article  CAS  Google Scholar 

  15. Shtrikman, H.; Popovitz-Biro, R.; Kretinin, A.; Houben, L.; Heiblum, M.; BukaŁa, M.; Galicka, M.; Buczko, R.; Kacman, P. Method for suppression of stacking faults in wurtzite III–V nanowires. Nano Lett. 2009, 9, 1506–1510.

    Article  CAS  Google Scholar 

  16. Joyce, H. J.; Wong-Leung, J.; Gao, Q.; Tan, H. H.; Jagadish, C. Phase perfection in zinc blende and wurtzite III–V nanowires using basic growth parameters. Nano Lett. 2010, 10, 908–915.

    Article  CAS  Google Scholar 

  17. Magnusson, M. H.; Deppert, K.; Malm, J. -O.; Bovin, J. -O.; Samuelson, L. Size-selected gold nanoparticles by aerosol technology. Nanostruct. Mater. 1999, 12, 45–48.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Lehmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lehmann, S., Jacobsson, D., Deppert, K. et al. High crystal quality wurtzite-zinc blende heterostructures in metal-organic vapor phase epitaxy-grown GaAs nanowires. Nano Res. 5, 470–476 (2012). https://doi.org/10.1007/s12274-012-0232-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-012-0232-3

Keywords

Navigation