Skip to main content
Log in

Reshaping the tips of ZnO nanowires by pulsed laser irradiation

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Vertically aligned ZnO nanowires have been synthesized by a hydrothermal method. After being irradiated by a short laser pulse, the tips of the as-synthesized ZnO nanowires can be tailored into a spherical shape. Transmission electron microscopy revealed that the spherical tip is a single-crystalline piece connected to the body of the ZnO nanowire, and that the center of the sphere is hollow. The growth mechanism of the hollow ZnO nanospheres is proposed to involve laser-induced ZnO evaporation immediately followed by re-nucleation in a temperature gradient environment. The laser-irradiated ZnO nanowire array shows hydrophobic properties while the original ZnO nanowire array shows hydrophilicity. The as-grown ZnO nanowire arrays with hollow spherical tips can serve as templates to grow ZnO nanowire arrays with very fine tips, which may be a good candidate material for use in field emission and scanning probe microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sun, T. L.; Feng, L.; Gao, X. F, Jiang, L. Bioinspired surfaces with special wettability. Acc. Chem. Res. 2005, 38, 644–652.

    Article  CAS  Google Scholar 

  2. Autumn, K. Gecko adhesion: Structure, function, and applications. MRS Bull. 2007, 32, 473–478.

    Article  Google Scholar 

  3. Kim, T. I.; Jeong, H. E.; Suh, K. Y.; Lee, H. H. Stooped nanohairs: Geometry-controllable, unidirectional, reversible, and robust gecko-like dry adhesive. Adv. Mater. 2009, 21, 2276–2281.

    Article  CAS  Google Scholar 

  4. Kim, T. I.; Suh, K. Y. Unidirectional wetting and spreading on stooped polymer nanohairs. Soft Matter 2009, 5, 4131–4135.

    Article  CAS  Google Scholar 

  5. Chu, K. H.; Xiao, R.; Wang, E. N. Uni-directional liquid spreading on asymmetric nanostructured surfaces. Nat. Mater. 2010, 9, 413–417.

    Article  CAS  Google Scholar 

  6. Cheng, C. L.; Chao, S. H.; Chen, Y. F. Enhancement of field emission in nanotip-decorated ZnO nanobottles. J. Cryst. Growth 2009, 311, 4381–4384.

    Article  CAS  Google Scholar 

  7. Xu, S.; Qin, Y.; Xu, C.; Wei, Y. G.; Yang, R. S.; Wang, Z. L. Self-powered nanowire devices. Nat. Nanotechnol. 2010, 5, 366–373.

    Article  CAS  Google Scholar 

  8. Zhu, G. A.; Yang, R. S.; Wang, S. H.; Wang, Z. L. Flexible high-output nanogenerator based on lateral ZnO nanowire array. Nano Lett. 2010, 10, 3151–3155.

    Article  CAS  Google Scholar 

  9. Lupan, O.; Pauporte, T.; Viana, B. Low-voltage UV-electroluminescence from ZnO-nanowire array/p-GaN light-emitting diodes. Adv. Mater. 2010, 22, 3298–3302.

    Article  CAS  Google Scholar 

  10. Han, J. B.; Fan, F. R.; Xu, C.; Lin, S. S.; Wei, M.; Duan, X.; Wang, Z. L. ZnO nanotube-based dye-sensitized solar cell and its application in self-powered devices. Nanotechnology 2010, 21, 405203.

    Article  Google Scholar 

  11. Comini, E.; Faglia, G.; Sberveglieri, G.; Pan, Z. W.; Wang, Z. L. Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts. Appl. Phys. Lett. 2002, 81, 1869–1871.

    Article  CAS  Google Scholar 

  12. Xi, Y.; Song, J. H.; Xu, S.; Yang, R. S.; Gao, Z. Y.; Hu, C. G.; Wang, Z. L. Growth of ZnO nanotube arrays and nanotube based piezoelectric nanogenerators. J. Mater. Chem. 2009, 19, 9260–9264.

    Article  CAS  Google Scholar 

  13. Kong, X. Y.; Ding, Y.; Yang, R.; Wang, Z. L. Single-crystal nanorings formed by epitaxial self-coiling of polar-nanobelts. Science 2004, 303, 1348–1351.

    Article  CAS  Google Scholar 

  14. Matsumoto, K.; Saito, N.; Mitate, T.; Hojo, J.; Inada, M.; Haneda, H. Surface polarity determination of ZnO spherical particles synthesized via solvothermal route. Cryst. Growth Des. 2009, 9, 5014–5016.

    Article  CAS  Google Scholar 

  15. Shen, Y.; Hong, J. I.; Xu, S.; Lin, S. S.; Fang, H.; Zhang, S.; Ding, Y.; Snyder, R. L.; Wang, Z. L. A general approach for fabricating arc-shaped composite nanowire arrays by pulsed laser deposition. Adv. Funct. Mater. 2010, 20, 703–707.

    Article  CAS  Google Scholar 

  16. Xu, H. J.; Hou, Y. M.; Gao, J. Y.; Zhu, H. C.; Zhu, R.; Sun, Y. H.; Zhu, X. L.; Wang, Y. Z.; Wang, X. W.; Yu, D. P. Regrowth of template ZnO nanowires for the underlying catalyst-free growth mechanism. Cryst. Growth Des. 2011, 11, 2135–2141.

    Article  CAS  Google Scholar 

  17. Elias, J.; Levy-Clement, C.; Bechelany, M.; Michler, J.; Wang, G. Y.; Wang, Z.; Philippe, L. Hollow urchin-like ZnO thin films by electrochemical deposition. Adv. Mater. 2010, 22, 1607–1612.

    Article  CAS  Google Scholar 

  18. Zeng, H. B.; Cai, W. P.; Liu, P. S.; Xu, X. X.; Zhou, H. J.; Klingshirn, C.; Kalt, H. ZnO-based hollow nanoparticles by selective etching: Elimination and reconstruction of metal-semiconductor interface, improvement of blue emission and photocatalysis. ACS Nano 2008, 2, 1661–1670.

    Article  CAS  Google Scholar 

  19. Liu, J.; Chen, X. L.; Wang, W. J.; Huang, Q. S.; Wang, G.; Zhu, K. X.; Guo, J. G. Large scale synthesis of porous ZnO hollow structures with tunable diameters and shell thicknesses. Mater. Lett. 2009, 63, 2221–2223.

    Article  CAS  Google Scholar 

  20. Park, J. Y.; Choi, S. W.; Kim, S. S. A synthesis and sensing application of hollow ZnO nanofibers with uniform wall thicknesses grown using polymer templates. Nanotechnology 2010, 21, 475601.

    Article  Google Scholar 

  21. Zhang, Z. Y.; Li, X. H.; Wang, C. H.; Wei, L. M.; Liu, Y. C.; Shao, C. L. ZnO hollow nanofibers: Fabrication from facile single capillary electrospinning and applications in gas sensors. J. Phys. Chem. C 2009, 113, 19397–19403.

    Article  CAS  Google Scholar 

  22. Gao, Y. F.; Nagai, M.; Chang, T. C.; Shyue, J. J. Solution-derived ZnO nanowire array film as photoelectrode in dye-sensitized solar cells. Cryst. Growth Des. 2007, 7, 2467–2471.

    Article  CAS  Google Scholar 

  23. Maeng, J.; Heo, S.; Jo, G.; Choe, M.; Kim, S.; Hwang, H.; Lee, T. The effect of excimer laser annealing on ZnO nanowires and their field effect transistors. Nanotechnology 2009, 20, 095203.

    Article  Google Scholar 

  24. Szorenyi, T.; Laude, L. D.; Bertoti, I.; Kantor, Z.; Geretovszky, Z. Excimer-laser processing of indium-tin-oxide films: an optical investigation. J. Appl. Phys. 1995, 78, 6211–6219.

    Article  CAS  Google Scholar 

  25. Oh, M. S.; Hwang, D. K.; Lim, J. H.; Choi, Y. S.; Park, S. J. Current-driven hydrogen incorporation in zinc oxide. Appl. Phys. Lett. 2007, 91, 212102.

    Article  Google Scholar 

  26. Leuchtner, R. E. Mass spectrometry and photoionization studies of the ablation of ZnO: Ions, neutrals, and Rydbergs. Appl. Surf. Sci. 1998, 127, 626–632.

    Article  Google Scholar 

  27. Kwak, G.; Seol, M.; Tak, Y.; Yong, K. Superhydrophobic ZnO nanowire surface: Chemical modification and effects of UV irradiation. J. Phys. Chem. C 2009, 113, 12085–12089.

    Article  CAS  Google Scholar 

  28. Lee, S.; Kim, W.; Yong, K. Overcoming the water vulnerability of electronic devices: A highly water-resistant ZnO nanodevice with multifunctionality. Adv. Mater. 2011, 23, 4398–4402.

    Article  CAS  Google Scholar 

  29. Kwak, G.; Jung, S.; Yong, K. Multifunctional transparent ZnO nanorod films. Nanotechnology 2011, 22, 115705.

    Article  Google Scholar 

  30. Jiang, X.; Jia, C. L.; Szyszka, B. Manufacture of specific structure of aluminum-doped zinc oxide films by patterning the substrate surface. Appl. Phys. Lett. 2002, 80, 3090–3092.

    Article  CAS  Google Scholar 

  31. Kim, D. S.; Goesele, U.; Zacharias, M. Surface-diffusion induced growth of ZnO nanowires. J. Cryst. Growth 2009, 311, 3216–3219.

    Article  CAS  Google Scholar 

  32. Fan, F. R.; Ding, Y.; Liu, D. Y.; Tian, Z. Q.; Wang, Z. L. Facet-selective epitaxial growth of heterogeneous nanostructures of semiconductor and metal: ZnO nanorods on Ag nanocrystals. J. Am. Chem. Soc. 2009, 131, 12036–12037.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong Lin Wang.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Ding, Y., Yuan, D. et al. Reshaping the tips of ZnO nanowires by pulsed laser irradiation. Nano Res. 5, 412–420 (2012). https://doi.org/10.1007/s12274-012-0222-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-012-0222-5

Keywords

Navigation