Skip to main content
Log in

Facile synthesis of ZnO nanocrystals via a solid state reaction for high performance plastic dye-sensitized solar cells

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

We report the facile synthesis of ZnO nanocrystals via a one-step solid state reaction at room temperature and their application as the photoanode in plastic dye-sensitized solar cells (DSCs). ZnO nanoparticles were prepared utilizing zinc acetate dihydrate and sodium hydroxide with a short grinding time and without a sintering process. The as-prepared samples with the polycrystalline hexagonal wurtzite structure were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The obtained ZnO nanoparticles exhibited high crystallinity even without a high temperature sintering treatment during the preparation process. The effects of compression post-treatment on the photovoltaic performance of DSCs were also investigated using intensity modulated photocurrent spectroscopy (IMPS), incident photo-to-current conversion efficiency (IPCE), and electrochemical impedance spectroscopy (EIS). The results indicate that the improvement of power conversion efficiency after compression post-treatment of ZnO photoelectrode can be attributed to its high photoelectron collection efficiency and effective electron transport. Under the optimized conditions, a full plastic D149-sensitized ZnO solar cell measured under illumination of 100 mW·cm−2 (AM 1.5G) presents an energy conversion efficiency of 3.76% with open-circuit voltage of 0.688 V, short-circuit current density of 8.55 mA·cm−2, and fill factor of 0.64. These results demonstrate that the one-step solid state reaction is a convenient and effective method for the synthesis of ZnO nanocrystals for use in plastic DSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O’Regan, B.; Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991, 353, 737–740.

    Article  Google Scholar 

  2. Hagfeldt, A.; Boschloo, G.; Sun, L. C.; Kloo, L.; Pettersson, H. Dye-sensitized solar cells. Chem. Rev. 2010, 110, 6595–6663.

    Article  CAS  Google Scholar 

  3. Zhang, G. L.; Bala, H.; Cheng, Y. M.; Shi, D.; Lv, X. J.; Yu, Q. J.; Wang, P. High efficiency and stable dye-sensitized solar cells with an organic chromophore featuring a binary π-conjugated spacer. Chem. Commun. 2009, 16, 2198–2200.

    Article  Google Scholar 

  4. Gao, F.; Wang, Y.; Shi, D.; Zhang, J.; Wang, M. K.; Jing, X. Y.; Humphry-Baker, R.; Wang, P.; Zakeeruddin, S. M.; Grätzel, M. Enhance the optical absorptivity of nanocrystalline TiO2 film with high molar extinction coefficient ruthenium sensitizers for high performance dye-sensitized solar cells. J. Am. Chem. Soc. 2008, 130, 10720–10728.

    Article  CAS  Google Scholar 

  5. Liang, M.; Xu, W.; Cai, F. S.; Chen, P. Q.; Peng, B.; Chen, J.; Li, Z. M. New triphenylamine-based organic dyes for efficient dye-sensitized solar cells. J. Phys. Chem. C 2007, 111, 4465–4472.

    Article  CAS  Google Scholar 

  6. Bai, Y.; Cao, Y. M.; Zhang, J.; Wang, M.; Li, R. Z.; Wang, P.; Zakeeruddin, S. M.; Grätzel, M. High-performance dye-sensitized solar cells based on solvent-free electrolytes produced from eutectic melts. Nat. Mater. 2008, 7, 626–630.

    Article  CAS  Google Scholar 

  7. Yin, X. O.; Tan, W. W.; Xiang, W. C.; Lin, Y. A.; Zhang, J. B.; Xiao, X. R.; Li, X. P.; Zhou, X. W.; Fang, S. B. Novel chemically cross-linked solid state electrolyte for dye-sensitized solar cells. Electrochim. Acta 2010, 55, 5803–5807.

    Article  CAS  Google Scholar 

  8. Yanagida, S.; Yu, Y. H.; Manseki, K. Iodine/iodide-free dye-sensitized solar cells. Acc. Chem. Res. 2009, 42, 1827–1838.

    Article  CAS  Google Scholar 

  9. Yum, J. H.; Chen, P.; Grätzel, M.; Nazeeruddin, M. K. Recent developments in solid-state dye-sensitized solar cells, ChemSusChem 2008, 1, 699–707.

    Article  CAS  Google Scholar 

  10. Luo, Y. H.; Li, D. M.; Meng, Q. B. Towards optimization of materials for dye-sensitized solar cells. Adv. Mater. 2009, 21, 4647–4651.

    Article  CAS  Google Scholar 

  11. Huang, Z.; Liu, X. Z.; Li, K. X.; Li, D. M.; Luo, Y. H.; Li, H.; Song, W. B.; Chen, L. Q.; Meng, Q. B. Application of carbon materials as counter electrodes of dye-sensitized solar cells. Electrochem. Commun. 2007, 9, 596–598.

    Article  CAS  Google Scholar 

  12. Peng, S. J.; Shi, J. F.; Pei, J.; Liang, Y. L.; Cheng, F. Y.; Liang, J.; Chen, J. Ni1−x Ptx (x = 0–0.08) films as the photocathode of dye-sensitized solar cells with high efficiency. Nano Res. 2009, 2, 484–492.

    Article  CAS  Google Scholar 

  13. Wang, G. Q.; Xing, W.; Zhuo, S. P. Application of mesoporous carbon to counter electrode for dye-sensitized solar cells. J. Power Sources 2009, 194, 568–573.

    Article  CAS  Google Scholar 

  14. Yin, X. O.; Xue, Z. S.; Liu, B. Electrophoretic deposition of Pt nanoparticles on plastic substrates as counter electrode for flexible dye-sensitized solar cells. J. Power Sources 2011, 196, 2422–2426.

    Article  CAS  Google Scholar 

  15. Bwana, N. N. Effects of the morphology of the electrode nanostructures on the performance of dye-sensitized solar cells. Nano Res. 2008, 1, 483–489.

    Article  CAS  Google Scholar 

  16. Zhang, Q. F.; Cao, G. Z. Hierarchically structured photo-electrodes for dye-sensitized solar cells. J. Mater. Chem. 2011, 21, 6769–6774.

    Article  CAS  Google Scholar 

  17. Xu, F.; Sun. L. T. Solution-derived ZnO nanostructures for photoanodes of dye-sensitized solar cells. Energ. Environ. Sci. 2011, 4, 818–841.

    Article  CAS  Google Scholar 

  18. Yu, X. L.; Song, J. G.; Fu, Y. S.; Xie, Y.; Song, X.; Sun, J.; Du, X. W. ZnS/ZnO heteronanostructure as photoanode to enhance the conversion efficiency of dye-sensitized solar cells. J. Phys. Chem. C 2010, 114, 2380−2384.

    Article  CAS  Google Scholar 

  19. Li, P.; Wei, Z.; Wu, T.; Peng, Q.; Li, Y. D. Au-ZnO hybrid nanopyramids and their photocatalytic properties. J. Am. Chem. Soc. 2011, 133, 5660–5663.

    Article  CAS  Google Scholar 

  20. Si, S. F.; Li, C. H.; Wang, X.; Peng, Q.; Li, Y. D. Fe2O3/ZnO core-shell nanorods for gas sensors. Sensor Actuat. B-Chem. 2006, 119, 52–56.

    Article  Google Scholar 

  21. Yao, B. D.; Chan, Y. F.; Wang, N. Formation of ZnO nanostructures by a simple way of thermal evaporation. Appl. Phys. Lett. 2002, 81, 757–759.

    Article  CAS  Google Scholar 

  22. Lin, H. F.; Liao, S. C.; Hung, S. W. The dc thermal plasma synthesis of ZnO nanoparticles for visible-light photocatalyst. J. Photoch. Photobio. A 2005, 174, 82–87.

    Article  CAS  Google Scholar 

  23. Wu, S. J.; Han, H. W.; Tai, Q. D.; Zhang, J.; Chen, B. L.; Xu, S.; Zhou, C. H.; Yang, Y.; Hu, H.; Zhao, X. Z. Improvement in dye-sensitized solar cells with a ZnO-coated TiO2 electrode by RF magnetron sputtering. Appl. Phys. Lett. 2008, 92, 122106.

    Article  Google Scholar 

  24. Ayouchi, R.; Leinen, D.; Martin, F.; Gabas, M.; Dalchiele, E.; Ramos-Barrado, J. R. Preparation and characterization of transparent ZnO thin films obtained by spray pyrolysis. Thin Solid Films 2003, 426, 68–77.

    Article  CAS  Google Scholar 

  25. Yin, X. O.; Liu, X. Z.; Wang, L.; Liu, B. Electrophoretic deposition of ZnO photoanode for plastic dye-sensitized solar cells. Electrochem. Commun. 2010, 12, 1241–1244.

    Article  CAS  Google Scholar 

  26. Liu, X. Z.; Luo, Y. H.; Li, H.; Fan, Y. Z.; Yu, Z. X.; Lin, Y.; Chen, L. Q.; Meng, Q. B. Room temperature fabrication of porous ZnO photoelectrodes for flexible dye-sensitized solar cells. Chem. Commun. 2007, 27, 2847−2849.

    Article  Google Scholar 

  27. Cho, S.; Jung, S. H.; Lee, K. H. Morphology-controlled growth of ZnO nanostructures using microwave irradiation: From basic to complex structures. J. Phys. Chem. C 2008, 112, 12769–12776.

    Article  CAS  Google Scholar 

  28. Lu, J.; Ng, K. M.; Yang, S. H. Efficient, one-step mechanochemical process for the synthesis of ZnO nanoparticles. Ind. Eng. Chem. Res. 2008, 47, 1095–1101.

    Article  CAS  Google Scholar 

  29. Lai, Y. H.; Lin, C. Y.; Chen, H. W.; Chen, J. G.; Kung, C. W.; Vittal, R.; Ho, K. C. Fabrication of a ZnO film with a mosaic structure for a high efficient dye-sensitized solar cell. J. Mater. Chem. 2010, 20, 9379–9385.

    Article  CAS  Google Scholar 

  30. Zhang, Q.; Joo, J. B.; Lu, Z. D.; Dahl, M.; Oliveira, D. Q. L.; Ye, M. M.; Yin, Y. D. Self-assembly and photocatalysis of mesoporous TiO2 nanocrystal clusters. Nano Res. 2011, 4, 103–114.

    Article  CAS  Google Scholar 

  31. Lindström, H.; Holmberg, A.; Magnusson, E.; Lindquist, S. E.; Malmqvist, L.; Hagfeldt, A. A new method for manufacturing nanostructured electrodes on plastic substrates. Nano Lett. 2001, 1, 97–100.

    Article  Google Scholar 

  32. Krüger, J.; Plass, R.; Grätzel, M.; Cameron, P. J.; Peter, L. M. Charge transport and back reaction in solid-state dye-sensitized solar cells: A study using intensity-modulated photovoltage and photocurrent spectroscopy. J. Phys. Chem. B 2003, 107, 7536–7539.

    Article  Google Scholar 

  33. Tan, W. W.; Yin, X.; Zhou, X. M.; Zhang, J. B.; Xiao, X. R; Lin, Y. Electrophoretic deposition of nanocrystalline TiO2 films on Ti substrates for use in flexible dye-sensitized solar cells. Electrochim. Acta 2009, 54, 4467–4472.

    Article  CAS  Google Scholar 

  34. Ito, S.; Ha, N. L. C.; Rothenberger, G.; Liska, P.; Comte, P.; Zakeeruddin, S. M.; Pechy, P.; Nazeeruddin, M. K.; Grätzel, M. High-efficiency (7.2%) flexible dye-sensitized solar cells with Ti-metal substrate for nanocrystalline-TiO2 photoanode. Chem. Commun. 2006, 4004–4006.

  35. Liu, L. P.; Wang, G. M.; Li, Y.; Li, Y. D.; Zhang, J. Z. CdSe quantum dot-sensitized Au/TiO2 hybrid mesoporous films and their enhanced photoelectrochemical performance. Nano Res. 2011, 4, 249–258.

    Article  CAS  Google Scholar 

  36. van de Lagemaat, J.; Benkstein, K. D.; Frank, A. J. Relation between particle coordination number and porosity in nanoparticle films: Implications to dye-sensitized solar cells. J. Phys. Chem. B 2001, 105, 12433–12436.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiong Yin or Tao He.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yin, X., Wang, B., He, M. et al. Facile synthesis of ZnO nanocrystals via a solid state reaction for high performance plastic dye-sensitized solar cells. Nano Res. 5, 1–10 (2012). https://doi.org/10.1007/s12274-011-0178-X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-011-0178-X

Keywords

Navigation