Skip to main content
Log in

Tailoring the diameter of single-walled carbon nanotubes for optical applications

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Single-walled carbon nanotubes (SWCNTs) with specific diameters are required for various applications particularly in electronics and photonics, since the diameter is an essential characteristic determining their electronic and optical properties. In this work, the selective growth of SWCNTs with a certain mean diameter is achieved by the addition of appropriate amounts of CO2 mixed with the carbon source (CO) into the aerosol (floating catalyst) chemical vapor deposition reactor. The noticeable shift of the peaks in the absorption spectra reveals that the mean diameters of the as-deposited SWCNTs are efficiently altered from 1.2 to 1.9 nm with increasing CO2 concentration. It is believed that CO2 acts as an etching agent and can selectively etch small diameter tubes due to their highly curved carbon surfaces. Polymer-free as-deposited SWCNT films with the desired diameters are used as saturable absorbers after stamping onto a highly reflecting Ag-mirror using a simple dry-transfer technique. Sub-picosecond mode-locked fiber laser operations at ∼1.56 μm and ∼2 μm are demonstrated, showing improvements in the performance after the optimization of the SWCNT properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dresselhaus, M. S.; Dresselhaus, G.; Avouris, P. Carbon Nanotubes Synthesis, Structures, and Applications. Springer: Berlin, New York, 2001.

    Book  Google Scholar 

  2. Sato, Y.; Yanagi, K.; Miyata, Y.; Suenaga, K.; Kataura, H.; Iijima, S. Chiral-angle distribution for separated single-walled carbon nanotubes. Nano Lett. 2008, 8, 3151–3154.

    Article  CAS  Google Scholar 

  3. Fleurier, R.; Lauret, J. -S.; Lopez, U.; Loiseau, A. Transmission electron microscopy and UV-vis-IR spectroscopy analysis of the diameter sorting of carbon nanotubes by gradient density ultracentrifugation. Adv. Funct. Mater. 2009, 19, 2219–2223.

    Article  CAS  Google Scholar 

  4. Wang, F; Rozhin, A. G.; Scardaci, V; Sun, Z; Hennrich, F; White, I. H.; Milne, W. I.; Ferrari, A. C. Wideband-tuneable, nanotube mode-locked, fibre laser. Nat. Nanotechnol. 2008, 3, 738–742.

    Article  CAS  Google Scholar 

  5. Kivistö, S.; Hakulinen, T.; Kaskela, A.; Aitchison, B.; Brown, D. P.; Nasibulin, A. G.; Kauppinen, E. I.; Härkönen, A.; Okhotnikov, O. G. Carbon nanotube films for ultrafast broadband technology. Opt. Express 2009, 17, 2358–2363.

    Article  Google Scholar 

  6. Solodyankin, M. A.; Obraztsova, E. D.; Lobach, A. S.; Chernov, A. I.; Tausenev, A. V.; Konov, V. I.; Dianov, E. M. Mode-locked 1.93 μm thulium fiber laser with a carbon nanotube absorber. Opt. Lett. 2008, 33, 1336–1338.

    Article  CAS  Google Scholar 

  7. Kaskela, A.; Nasibulin, A. G.; Timmermans, M. Y.; Aitchison, B.; Papadimitratos, A.; Tian, Y.; Zhu, Z.; Jiang, H.; Brown, D. P.; Zakhidov, A.; Kauppinen, E. I. Aerosol-synthesized SWCNT networks with tunable conductivity and transparency by a dry transfer technique. Nano Lett. 2010, 10, 4349–4355.

    Article  CAS  Google Scholar 

  8. Moisala, A.; Nasibulin, A. G.; Brown, D. P.; Jiang, H.; Khriachtchev, L.; Kauppinen, E. I. Single-walled carbon nanotube synthesis using ferrocene and iron pentacarbonyl in a laminar flow reactor. Chem. Eng. Sci. 2006, 61, 4393–4402.

    Article  CAS  Google Scholar 

  9. Moisala, A.; Nasibulin, A. G.; Shandakov, S. D.; Jiang, H.; Kauppinen, E. I. On-line detection of single-walled carbon nanotube formation during aerosol synthesis methods. Carbon 2005, 43, 2066–2074.

    Article  CAS  Google Scholar 

  10. Dresselhaus, M. S.; Jorio, A. Raman Spectroscopy of carbon nanotubes in 1997 and 2007. J. Phys. Chem. C 2007, 111, 17887–17893.

    Article  CAS  Google Scholar 

  11. Dresselhaus, M. S.; Dresselhaus, G.; Saito, R.; Jorio, A. Raman spectroscopy of carbon nanotubes. Phys. Rep. 2005, 409, 47–99.

    Article  Google Scholar 

  12. Araujo, P. T.; Doorn, S. K.; Kilina, S.; Tretiak, S.; Einarsson, E.; Maruyama, S.; Chacham, H.; Pimenta, M. A.; Jorio, A. Third and fourth optical transitions in semiconducting carbon nanotubes. Phys. Rev. Lett. 2007, 98, 067401.

    Article  Google Scholar 

  13. Liu, X.; Pichler, T.; Knupfer, M.; Golden, M. S.; Fink, J.; Kataura, H.; Achiba, Y. Detailed analysis of the mean diameter and diameter distribution of single-wall carbon nanotubes from their optical response. Phys. Rev. B 2002, 66, 045411.

    Article  Google Scholar 

  14. Tian, Y.; Jiang, H.; v. Pfaler, J.; Zhu, Z.; Nasibulin, A. G.; Nikitin, T.; Aitchison, B.; Khriachtchev, L.; Brown, D. P.; Kauppinen, E. I. Analysis of the size distribution of single-walled carbon nanotubes using optical absorption spectroscopy. J. Phys. Chem. Lett. 2010, 1, 1143–1148.

    Article  CAS  Google Scholar 

  15. Anisimov, A. S.; Nasibulin, A. G.; Jiang, H.; Launois, P.; Cambedouzou, J.; Shandakov, S. D.; Kauppinen, E. I. Mechanistic investigations of single-walled carbon nanotube synthesis by ferrocene vapor decomposition in carbon monoxide. Carbon 2010, 48, 380–388.

    Article  CAS  Google Scholar 

  16. Nasibulin, A. G.; Shandakov, S. D. Aerosol synthesis of single-walled carbon nanotubes. In Aerosols: Science and Technology; Agranovski. I., Ed.; Wiley-VCH: Weinheim, Germany, 2010; pp. 65–89.

    Chapter  Google Scholar 

  17. Maruyama, S.; Murakami, Y.; Shibuta, Y.; Miyauchi, Y.; Chiashi, S. Generation of single-walled carbon nanotubes from alcohol and generation mechanism by molecular dynamics simulations. J. Nanosci. Nanotechnol. 2004, 4, 360–367.

    Article  CAS  Google Scholar 

  18. Ding, F.; Bolton, K.; Rosen, A. Nucleation and growth of single-walled carbon nanotubes: A molecular dynamics study. J. Phys. Chem. B 2004, 108, 17369–17377.

    Article  CAS  Google Scholar 

  19. Yoshida, H.; Takeda, S.; Uchiyama, T.; Kohno, H.; Homma, Y. Atomic-scale in-situ observation of carbon nanotube growth from solid state iron carbide nanoparticles. Nano Lett. 2008, 8, 2082–2086.

    Article  CAS  Google Scholar 

  20. Helveg, S.; Lopez-Cartes, C.; Sehested, J.; Hansen, P. L.; Clausen, B. S.; Rostrup-Nielsen, J. R.; Abild-Pedersen, F.; Norskov, J. K. Atomic-scale imaging of carbon nanofibre growth. Nature 2004, 427, 426–429.

    Article  CAS  Google Scholar 

  21. Mudimela, P. R.; Nasibulin, A. G.; Jiang, H.; Susi, T.; Chassaing, D.; Kauppinen, E. I. Incremental variation in the number of carbon nanotube walls with growth temperature. J. Phys. Chem. C 2009, 113, 2212–2218.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Albert G. Nasibulin or Esko I. Kauppinen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tian, Y., Timmermans, M.Y., Kivistö, S. et al. Tailoring the diameter of single-walled carbon nanotubes for optical applications. Nano Res. 4, 807–815 (2011). https://doi.org/10.1007/s12274-011-0137-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-011-0137-6

Keywords

Navigation