Skip to main content
Log in

Selective growth of ZnO nanorods on SiO2/Si substrates using a graphene buffer layer

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

A promising strategy for the selective growth of ZnO nanorods on SiO2/Si substrates using a graphene buffer layer in a low temperature solution process is described. High densities of ZnO nanorods were grown over a large area and most ZnO nanorods were vertically well-aligned on graphene. Furthermore, selective growth of ZnO nanorods on graphene was realized by applying a simple mechanical treatment, since ZnO nanorods formed on graphene are mechanically stable on an atomic level. These results were confirmed by first principles calculations which showed that the ZnO-graphene binding has a low destabilization energy. In addition, it was found that ZnO nanorods grown on SiO2/Si with a graphene buffer layer have better optical properties than ZnO nanorods grown on bare SiO2/Si. The nanostructured ZnO-graphene materials have promising applications in future flexible electronic and optical devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

    Article  CAS  Google Scholar 

  2. Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Graphene-based composite materials. Nature 2006, 442, 282–286.

    Article  CAS  Google Scholar 

  3. Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J. H.; Kim, P.; Choi, J. Y.; Hong, B. H. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009, 457, 706–710.

    Article  CAS  Google Scholar 

  4. Reina, A.; Thiele, S.; Jia, X.; Bhaviripudi, S.; Dresselhaus, M. S.; Schaefer, J. A.; Kong, J. Growth of large-area single- and bi-layer graphene by controlled carbon precipitation on polycrystalline Ni surfaces. Nano Res. 2009, 2, 509–516.

    Article  CAS  Google Scholar 

  5. Xu, Y.; Liu, Z.; Zhang, X.; Wang, Y.; Tian, J.; Huang, Y.; Ma, Y.; Zhang, X.; Chen, Y. A graphene hybrid material covalently functionalized with porphyrin: Synthesis and optical limiting property. Adv. Mater. 2009, 21, 1275–1279.

    Article  CAS  Google Scholar 

  6. Kamat, P. V. Graphene-based nanoarchitectures. Anchoring semiconductor and metal nanoparticles on a two-dimensional carbon support. J. Phys. Chem. Lett. 2009, 1, 520–527.

    Article  Google Scholar 

  7. Lightcap, I. V.; Kosel, T. H.; Kamat, P. V. Anchoring semiconductor and metal nanoparticles on a two-dimensional catalyst Mat. storing and shuttling electrons with reduced graphene oxide. Nano Lett. 2010, 10, 577–583.

    Article  CAS  Google Scholar 

  8. Wang, X.; Tabakman, S. M.; Dai, H. Atomic layer deposition of metal oxides on pristine and functionalized graphene. J. Am. Chem. Soc. 2008, 130, 8152–8153.

    Article  CAS  Google Scholar 

  9. Kim, Y. T.; Han, J. H.; Hong, B. H.; Kwon, Y. U. Electrochemical deposition of CdSe quantum dot arrays on large-scale graphene electrodes using mesoporous silica thin film templates. Adv. Mater. 2010, 22, 515–518.

    Article  CAS  Google Scholar 

  10. Lee, B.; Park, S. Y.; Kim, H. C.; Cho, H.; Vogel, E. M.; Kim, M. J.; Wallace, R. M.; Kim, J. Conformal Al2O3 dielectric layer deposited by atomic layer deposition for graphene-based nanoelectronics. Appl. Phys. Lett. 2008, 92, 203102.

    Article  Google Scholar 

  11. Tong, L. M.; Li, Z. P.; Zhu, T.; Xu, H. X.; Liu, Z. F. Single gold-nanoparticle-enhanced raman scattering of individual single-walled carbon nanotubes via atomic force microscope manipulation. J. Phys. Chem. C 2008, 112, 7119–7123.

    Article  CAS  Google Scholar 

  12. Saito, N.; Haneda, H.; Sekiguchi, T.; Ohashi, N.; Sakaguchi, I.; Koumoto, K. Low-temperature fabrication of light-emitting zinc oxide micropatterns using self-assembled monolayers. Adv. Mater. 2002, 14, 418–421.

    Article  CAS  Google Scholar 

  13. Choi, D.; Choi, M. Y.; Choi, W. M.; Shin, H. J.; Seo, J. S.; Park, J.; Yoon, S. M.; Chae, S. J.; Lee, Y. H.; Kim, S. W.; Choi, J. Y.; Lee, S. Y.; Kim, J. M. Fully rollable transparent nanogenerators based on graphene electrodes. Adv. Mater. 2010, 22, 2187–2192.

    Article  CAS  Google Scholar 

  14. Wang, X.; Gao, Y.; Wei, Y.; Wang, Z. L. Output of an ultrasonic wave-driven nanogenerator in a confined tube. Nano Res. 2009, 2, 177–182.

    Article  CAS  Google Scholar 

  15. Kim, Y. J.; Lee, J. H.; Yi, G. C. Vertically aligned ZnO nanostructures grown on graphene layers. Appl. Phys. Lett. 2009, 95, 213101.

    Article  Google Scholar 

  16. Lee, J. M.; Pyun, Y. B.; Yi, J.; Choung, W.; Park, W. I. ZnO nanorod-graphene hybrid architectures for multifunctional conductors. J. Phys. Chem. C 2009, 113, 19134–19138.

    Article  CAS  Google Scholar 

  17. Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 1990, 41, 7892–7895.

    Article  Google Scholar 

  18. Choi, M. Y.; Choi, D.; Jin, M. J.; Kim, I.; Kim, S. H.; Choi, J. Y.; Lee, S. Y.; Kim, J. M.; Kim, S W. Mechanically powered transparent flexible charge-generating nanodevices with piezoelectric ZnO nanorods Adv. Mater. 2009, 21, 2185–2189.

    Article  CAS  Google Scholar 

  19. Choi, D.; Choi, M. Y.; Shin, H. J.; Yoon, S. M.; Seo, J. S.; Choi, J. Y.; Lee, S. Y.; Kim, J. M.; Kim, S. W. Nanoscale networked single-walled carbon-nanotube electrodes for transparent flexible nanogenerators. J. Phys. Chem. C 2010, 114, 1379–1384.

    Article  CAS  Google Scholar 

  20. Kim, K. K.; Lee, S. D.; Kim, H.; Park, J. C.; Lee, S. N.; Park, Y.; Park, S. J.; Kim, S. W. Enhanced light extraction efficiency of GaN-based light-emitting diodes with ZnO nanorod arrays grown using aqueous solution. Appl. Phys. Lett. 2009, 94, 071118.

    Article  Google Scholar 

  21. Blake, P.; Hill, E. W.; Castro Neto, A. H.; Novoselov, K. S.; Jiang, D.; Yang, R.; Booth, T. J.; Geim, A. K. Making graphene visible. Appl. Phys. Lett. 2007, 91, 063124.

    Article  Google Scholar 

  22. Ni, Z. H.; Wang, H. M.; Kasmin, J.; Fan, H. M.; Yu, T.; Wu, Y. H.; Feng, Y. P.; Shen, Z. X. Graphene thickness determination using reflection and contrast spectroscopy. Nano Lett. 2007, 7, 2758–2763.

    Article  CAS  Google Scholar 

  23. Chae, S. J.; Gunes, F.; Kim, K. K.; Kim, E. S.; Han, G. H.; Kim, S. M.; Shin, H. J.; Yoon, S. M.; Choi, J. Y.; Park, M. H.; Yang, C. W.; Pribat, D.; Lee, Y. H. Synthesis of large-area graphene layers on poly-nickel substrate by chemical vapor deposition: Wrinkle formation. Adv. Mater. 2009, 21, 2328–2333.

    Article  CAS  Google Scholar 

  24. Lee, S. D.; Kim, Y. S.; Yi, M. S.; Choi, J. Y.; Kim, S. W. Morphology control and electroluminescence of ZnO nanorod/GaN heterojunctions prepared using aqueous solution. J. Phys. Chem. C 2009, 113, 8954–8958.

    Article  CAS  Google Scholar 

  25. Xuan, Y.; Lin, H. C.; Ye, P. D.; Wilk, G. D. Capacitance-voltage studies on enhancement-mode InGaAs metal-oxidesemiconductor field-effect transistor using atomic-layerdeposited Al2O3 gate dielectric. Appl. Phys. Lett. 2006, 88, 263518.

    Article  Google Scholar 

  26. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    Article  CAS  Google Scholar 

  27. Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a planewave basis set. Comput. Mater. Sci. 1996, 6, 15–19.

    Article  CAS  Google Scholar 

  28. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

    Article  CAS  Google Scholar 

  29. Nobis, T.; Kaidashev, E. M.; Rahm, A.; Lorenz, M.; Lenzner, J.; Grundmann, M. Spatially inhomogeneous impurity distribution in ZnO micropillars. Nano Lett. 2004, 4, 797–800.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jae-Young Choi or Sang-Woo Kim.

Additional information

These authors contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, W.M., Shin, KS., Lee, H.S. et al. Selective growth of ZnO nanorods on SiO2/Si substrates using a graphene buffer layer. Nano Res. 4, 440–447 (2011). https://doi.org/10.1007/s12274-011-0100-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-011-0100-6

Keywords

Navigation