Skip to main content

Advertisement

Log in

Performance-driven optimization of urban open space configuration in the cold-winter and hot-summer region of China

  • Research Article
  • Published:
Building Simulation Aims and scope Submit manuscript

Abstract

Urbanization has led to changes in urban morphology and climate, while urban open space has become an important ecological factor for evaluating the performance of urban development. This study presents an optimization approach using computational performance simulation. With a genetic algorithm using the Grasshopper tool, this study analyzed the layout and configuration of urban open space and its impact on the urban micro-climate under summer and winter conditions. The outdoor mean Universal Thermal Climate Index (UTCI) was applied as the performance indicator for evaluating the quality of the urban micro-climate. Two cases—one testbed and one real urban block in Nanjing, China—were used to validate the computer-aided simulation process. The optimization results in the testbed showed UTCI values varied from 36.5 to 37.3 °C in summer and from −4.9 to −1.9 °C in winter. In the case of the real urban block, optimization results show, for summer, although the average UTCI value increased by 0.6 °C, the average air velocity increased by 0.2 m/s; while in winter, the average UTCI value increased by 1.7 °C and the average air velocity decreased by 0.2 m/s. These results demonstrate that the proposed computer-aided optimization process can improve the thermal comfort conditions of open space in urban blocks. Finally, this study discusses strategies and guidelines for the layout design of urban open space to improve urban environment comfort.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ali SB, Patnaik S (2018). Thermal comfort in urban open spaces: Objective assessment and subjective perception study in tropical city of Bhopal, India. Urban Climate, 24: 954–967.

    Article  Google Scholar 

  • Asaeda T, Ca VT (2000). Characteristics of permeable pavement during hot summer weather and impact on the thermal environment. Building and Environment, 35: 363–375.

    Article  Google Scholar 

  • Bajšanski IV, Milošević DD, Savić SM (2015). Evaluation and improvement of outdoor thermal comfort in urban areas on extreme temperature days: Applications of automatic algorithms. Building and Environment, 94: 632–643.

    Article  Google Scholar 

  • Bajsanski I, Stojakovic V, Jovanovic M (2016). Effect of tree location on mitigating parking lot insolation. Computers, Environment and Urban Systems, 56: 59–67.

    Article  Google Scholar 

  • Berkovic S, Yezioro A, Bitan A (2012). Study of thermal comfort in courtyards in a hot arid climate. Solar Energy, 86: 1173–1186.

    Article  Google Scholar 

  • Błażejczyk K, Jendritzky G, Bröde P, Fiala D, Havenith G, Epstein Y, Psikuta A, Kampmann B (2013). An introduction to the Universal Thermal Climate Index (UTCI). Geographia Polonica, 86: 5–10.

    Article  Google Scholar 

  • Chatzidimitriou A, Yannas S (2015). Microclimate development in open urban spaces: The influence of form and materials. Energy and Buildings, 108: 156–174.

    Article  Google Scholar 

  • Chen L, Ng E, An X, Ren C, Lee M, Wang U, He Z (2012). Sky view factor analysis of street canyons and its implications for daytime intra-urban air temperature differentials in high-rise, high-density urban areas of Hong Kong: A GIS-based simulation approach. International Journal of Climatology, 32: 121–136.

    Article  Google Scholar 

  • China Ministry of Construction (1993). Standard of Climatic Regionalization for Architecture (GB50178-93). Beijing: China Planning Press. (in Chinese)

    Google Scholar 

  • Cocci Grifoni R, D’Onofrio R, Sargolini M, Pierantozzi M (2016). A parametric optimization approach to mitigating the urban heat island effect: A case study in Ancona, Italy. Sustainability, 8: 896.

    Article  Google Scholar 

  • Duarte DHS, Shinzato P, dos Santos Gusson C, Alves CA (2015). The impact of vegetation on urban microclimate to counterbalance built density in a subtropical changing climate. Urban Climate, 14: 224–239.

    Article  Google Scholar 

  • Ebrahimabadi S (2015). Outdoor comfort in cold climates: Integrating microclimate factors in urban design. PhD Thesis, Luleå Tekniska Universitet, Sweden.

    Google Scholar 

  • Fang Z, Feng X, Lin Z (2017). Investigation of PMV model for evaluation of the outdoor thermal comfort. Procedia Engineering, 205: 2457–2462.

    Article  Google Scholar 

  • Gao F (2014). High-rise residential automatic layout based on sunshine effect. Master Thesis, Nanjing University, China. (in Chinese)

    Google Scholar 

  • Hall A (2004). The role of surface albedo feedback in climate. Journal of Climate, 17: 1550–1568.

    Article  Google Scholar 

  • Hu Y, White M, Ding W (2016). An urban form experiment on urban heat island effect in high density area. Procedia Engineering, 169: 166–174.

    Article  Google Scholar 

  • Ignatius M, Wong NH, Jusuf SK (2015). Urban microclimate analysis with consideration of local ambient temperature, external heat gain, urban ventilation, and outdoor thermal comfort in the tropics. Sustainable Cities and Society, 19: 121–135.

    Article  Google Scholar 

  • Jhaldiyal A, Gupta K, Gupta PK, Thakur P, Kumar P (2018). Urban Morphology Extractor: A spatial tool for characterizing urban morphology. Urban Climate, 24: 237–246.

    Article  Google Scholar 

  • Johansson E (2006). Influence of urban geometry on outdoor thermal comfort in a hot dry climate: A study in Fez, Morocco. Building and Environment, 41: 1326–1338.

    Article  Google Scholar 

  • Karakounos I, Dimoudi A, Zoras S (2018). The influence of bioclimatic urban redevelopment on outdoor thermal comfort. Energy and Buildings, 158: 1266–1274.

    Article  Google Scholar 

  • Katić K, Li R, Zeiler W (2016). Thermophysiological models and their applications: A review. Building and Environment, 106: 286–300.

    Article  Google Scholar 

  • Li J, Niu J, Mak CM, Huang T, Xie Y (2018). Assessment of outdoor thermal comfort in Hong Kong based on the individual desirability and acceptability of sun and wind conditions. Building and Environment, 145: 50–61.

    Article  Google Scholar 

  • Mao J, Yang JH, Afshari A, Norford LK (2017). Global sensitivity analysis of an urban microclimate system under uncertainty: Design and case study. Building and Environment, 124: 153–170.

    Article  Google Scholar 

  • Marsh AJ (1997). Performance analysis and conceptual design. PhD Thesis, University of Western Australia, Australia.

    Google Scholar 

  • Martins TAL, Adolphe L, Bastos LEG (2014). From solar constraints to urban design opportunities: Optimization of built form typologies in a Brazilian tropical city. Energy and Buildings, 76: 43–56.

    Article  Google Scholar 

  • Mirzaei PA, Haghighat F (2010). Approaches to study Urban Heat Island—Abilities and limitations. Building and Environment, 45: 2192–2201.

    Article  Google Scholar 

  • Mushore TD, Odindi J, Dube T, Matongera TN, Mutanga O (2017). Remote sensing applications in monitoring urban growth impacts on in-and-out door thermal conditions: A review. Remote Sensing Applications: Society and Environment, 8: 83–93.

    Article  Google Scholar 

  • Nikolopoulou M, Lykoudis S (2007). Use of outdoor spaces and microclimate in a Mediterranean urban area. Building and Environment, 42: 3691–3707.

    Article  Google Scholar 

  • Nouri AS, Costa JP (2017). Addressing thermophysiological thresholds and psychological aspects during hot and dry mediterranean summers through public space design: The case of Rossio. Building and Environment, 118: 67–90.

    Article  Google Scholar 

  • Oliveira Panão MJN, Gonçalves HJP, Ferrão PMC (2009). Numerical analysis of the street canyon thermal conductance to improve urban design and climate. Building and Environment, 44: 177–187.

    Article  Google Scholar 

  • Park S, Tuller SE, Jo M (2014). Application of Universal Thermal Climate Index (UTCI) for microclimatic analysis in urban thermal environments. Landscape and Urban Planning, 125: 146–155.

    Article  Google Scholar 

  • Perini K, Chokhachian A, Dong S, Auer T (2017). Modeling and simulating urban outdoor comfort: Coupling ENVI-Met and TRNSYS by grasshopper. Energy and Buildings, 152: 373–384.

    Article  Google Scholar 

  • Roudsari MS, Pak M, Smith A (2013). Ladybug: A parametric environmental plugin for Grasshopper to help designers create an environmentally-conscious design. In: Proceedings of the 13th International IBPSA Building Simulation Conference, Chambéry, France, pp. 3129–3135.

    Google Scholar 

  • Schwarz N, Lautenbach S, Seppelt R (2011). Exploring indicators for quantifying surface urban heat islands of European cities with MODIS land surface temperatures. Remote Sensing of Environment, 115: 3175–3186.

    Article  Google Scholar 

  • Sha C, Wang Xu, Lin Y, Fan Y, Chen X, Hang J (2018). The impact of urban open space and ‘lift-up’ building design on building intake fraction and daily pollutant exposure in idealized urban models. Science of the Total Environment, 633: 1314–1328.

    Article  Google Scholar 

  • Taleb H, Musleh MA (2015). Applying urban parametric design optimisation processes to a hot climate: Case study of the UAE. Sustainable Cities and Society, 14: 236–253.

    Article  Google Scholar 

  • Taleghani M, Kleerekoper L, Tenpierik M, Van Den Dobbelsteen A (2015). Outdoor thermal comfort within five different urban forms in the Netherlands. Building and Environment, 83: 65–78.

    Article  Google Scholar 

  • Tsitoura M, Tsoutsos T, Daras T (2014). Evaluation of comfort conditions in urban open spaces. Application in the island of Crete. Energy Conversion and Management, 86: 250–258.

    Article  Google Scholar 

  • Tsitoura M, Michailidou M, Tsoutsos T (2017). A bioclimatic outdoor design tool in urban open space design. Energy and Buildings, 153: 368–381.

    Article  Google Scholar 

  • Tsoka S, Tsikaloudaki K, Theodosiou T (2017). Urban space’s morphology and microclimatic analysis: A study for a typical urban district in the Mediterranean city of Thessaloniki, Greece. Energy and Buildings, 156: 96–108.

    Article  Google Scholar 

  • Wang X-j, Wang J-g (2007). On the priority of urban space. Chinese Landscape Architecture, 23(3): 53–56.

    Google Scholar 

  • Wang Y, Berardi U, Akbari H (2016). Comparing the effects of urban heat island mitigation strategies for Toronto, Canada. Energy and Buildings, 114: 2–19.

    Article  Google Scholar 

  • Wen C-Y, Juan Y-H, Yang A-S (2017). Enhancement of city breathability with half open spaces in ideal urban street canyons. Building and Environment, 112: 322–336.

    Article  Google Scholar 

  • Xie X, Gou Z (2017). Building performance simulation as an early intervention or late verification in architectural design: Same performance outcome but different design solutions. Journal of Green Building, 12: 45–61.

    Article  Google Scholar 

  • Xue F, Gou Z, Lau SSY (2017). Green open space in high-dense Asian cities: Site configurations, microclimates and users’ perceptions. Sustainable Cities and Society, 34: 114–125.

    Article  Google Scholar 

  • Yang F, Qian F, Lau SSY (2013). Urban form and density as indicators for summertime outdoor ventilation potential: A case study on high-rise housing in Shanghai. Building and Environment, 70: 122–137.

    Article  Google Scholar 

  • Zare S, Hasheminejad N, Shirvan HE, Hemmatjo R, Sarebanzadeh K, Ahmadi S (2018). Comparing Universal Thermal Climate Index (UTCI) with selected thermal indices/environmental parameters during 12 months of the year. Weather and Climate Extremes, 19: 49–57.

    Article  Google Scholar 

  • Zheng Y, Ren C, Xu Y, Wang R, Ho J, Lau K, Ng E (2018). GIS-based mapping of Local Climate Zone in the high-density city of Hong Kong. Urban Climate, 24: 419–448.

    Article  Google Scholar 

Download references

Acknowledgements

The work described in this study was sponsored by the projects of the National Natural Science Foundation of China (NSFC#51678127), the National Scientific and Technological Support during the 12th Five-Year Plan Period (No. 2013BAJ10B13), and China Scholarship Council (CSC#201706095035). Any opinions, findings, conclusions, or recommendations expressed in this study are those of the authors and do not necessarily reflect the views of the National Scientific and Technological Support committee and NSFC. This work was also supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, the U.S. Department of Energy under Contract No. DEAC02-05CH11231.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaodong Xu or Tianzhen Hong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, X., Wu, Y., Wang, W. et al. Performance-driven optimization of urban open space configuration in the cold-winter and hot-summer region of China. Build. Simul. 12, 411–424 (2019). https://doi.org/10.1007/s12273-019-0510-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12273-019-0510-z

Keywords

Navigation