Skip to main content
Log in

Simulation of indoor airflow with RAST and SST-SAS models: A comparative study

  • Research Article
  • Indoor/Outdoor Airflow and Air Quality
  • Published:
Building Simulation Aims and scope Submit manuscript

Abstract

Computational fluid dynamics (CFD) provides a suitable means to predict the air distribution characteristics in indoor spaces. This paper evaluates the performance of two turbulence models in predicting an indoor airflow: the RAST (Rahman-Agarwal-Siikonen-Taghinia) sub-grid scale model (SGS) and SST-SAS (Shear Stress Transport with Scale-Adaptive Simulation) k-ω model of hybrid RANS-LES type. These two models are applied to investigate the airflows for three ventilation scenarios: (a) forced convection, (b) mixed (natural+forced) convection and (c) isothermal impinging jet in a room. The predictions are compared with the available experimental data in the literature. However, both models produce good results but comparisons show that RAST model predictions are in better agreement with experiments due to its sensitivity toward both the resolved strain rate and vorticity parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C μ :

eddy-viscosity coefficient

\(\bar C_s\) :

Smagorinsky coefficient

G :

filter function

g :

gravitational acceleration

k :

total turbulent kinetic energy

Pr :

molecular Prandtl number

Pr sgs :

sub-grid scale Prandtl number

Re :

Reynolds number

\(\bar S_{ij}\) :

resolved strain rate tensor

T :

temperature

\(\bar u_i\) :

grid filter velocity

\(\bar u_\tau\) :

friction velocity

\(\bar W_{ij}\) :

resolved vorticity tensor

y + :

dimensionless wall distance \((\bar u_\tau y/v)\)

β :

thermal expansion coefficient

δ i,j :

Kronecker’s delta

Δt :

time step

\(\bar \Delta\) :

grid filter width

v,v T :

laminar and turbulent viscosities

\(\bar \theta _i\) :

grid filter temperature

ρ :

density

τ i,j :

sub-grid scale stress tensor

CFD:

computational fluid dynamics

DSM:

dynamic Smagorinsky model

LES:

large eddy simulation

RANS:

Reynolds averaged Navier-Stokes

RAST:

Rahman-Agarwal-Siikonen-Taghinia

SGS:

sub-grid scale

i, j :

variable numbers

in:

inlet condition

out:

outlet condition

References

  • Baly D, Mergui S, Niculae C (1992). Confined turbulent mixed convection in the presence of a horizontal buoyant wall jet. In: Chen TS, Chu TY, eds, Fundamentals of Mixed Convection, HTD-Vol 213, New York: ASME, pp. 65–72.

    Google Scholar 

  • Cao GY, Ruponen M, Paavilainen R, Kurnitski J (2011). Modeling and simulation of the near-wall velocity of a turbulent ceiling attached plane jet after its impingement with the corner. Building and Environment, 46: 489–500.

    Article  Google Scholar 

  • Chen HJ, Moshfegh B, Cehlin M (2012). Numerical investigation of the flow behavior of an isothermal impinging jet in a room. Building and Environment, 49: 154–166.

    Article  Google Scholar 

  • Chen Q (1995). Comparison of different k-ɛ models for indoor air flow computations. Numerical Heat Transfer, Part B: Fundamentals, 28: 353–369.

    Article  Google Scholar 

  • Chen Q (1996). Prediction of room air motion by Reynolds-stress model. Building and Environment, 31: 233–244.

    Article  Google Scholar 

  • Chen Q (1997). Computational fluid dynamics for HVAC: Successes and failures. ASHRAE Transactions, 103(1): 178–187.

    Google Scholar 

  • Cheng Y, Lien FS, Yee E, Sinclair R (2003). A comparison of large eddy simulations with a standard k-ɛ Reynolds-averaged Navier-Stokes model for the prediction of a fully developed turbulent flow over a matrix of cubes. Journal of Wind Engineering and Industrial Aerodynamics, 91: 1301–1328.

    Article  Google Scholar 

  • Davidson L (2001). Hybrid LES-RANS: A combination of a one-equation SGS model and a k-ω model for predicting recirculating flows. In: Proceedings of ECCOMAS CFD Conference, Swansen, UK.

    Google Scholar 

  • Germano M, Piomelli U, Moin P, Cabot WH (1991). A dynamic subgrid-scale eddy viscosity model. Physics of Fluids A: Fluid Dynamics, 3: 1760–1765.

    Article  MATH  Google Scholar 

  • Heschl C, Inthavong K, Sanz W, Tu J (2013). Evaluation and improvements of RANS turbulence models for linear diffuser flows. Computers & Fluids, 71: 272–282.

    Article  MathSciNet  Google Scholar 

  • Krajnovic S, Davidson L (2006). A mixed one-equation subgrid model for large-eddy simulation. International Journal of Heat and Fluid Flow, 27: 402–415.

    Article  Google Scholar 

  • Luo S, Roux B (2004). Modeling of the HESCO nozzle diffuser used in IEA annex 20 experimental test room. Building and Environment, 39: 367–384.

    Article  Google Scholar 

  • Majander P (2000). Developments in large eddy simulation. Report 128, Aalto University.

    Google Scholar 

  • Majander P, Siikonen T (2002). Large-eddy simulation of a round jet in a cross-flow. International Journal of Heat and Fluid Flow, 23: 413–425.

    Article  Google Scholar 

  • Menter FR (1994). Two-equation eddy-viscosity turbulence model for engineering application. AIAA Journal, 32:1598–1605.

    Article  Google Scholar 

  • Menter FR, Egorov Y (2010). The scale-adaptive simulation method for unsteady turbulent flow predictions. Part 1: Theory and model description. Flow, Turbulence and Combustion, 85: 113–138.

    Article  MATH  Google Scholar 

  • Murakami S, Mochida A, Matsui K (1995). Large eddy simulation of non-isothermal room airflow, comparison between standard and dynamic type of Smagorinsky model, SEISAN-KENKYU. Journal of Institute of Industrial Science, 4(2): 7–12.

    Google Scholar 

  • Nielsen PV, Restivo A, Whitelaw JH (1978). The velocity characteristics of ventilated room. ASME Journal of Fluids Engineering, 100: 291–298.

    Article  Google Scholar 

  • Rahman MM, Miettinen A, Siikonen T (1996). Modified SIMPLE formulation on a collocated grid with an assessment of the simplified QUICK scheme. Numerical Heat Transfer, Part B: Fundamentals, 30: 291–314.

    Article  Google Scholar 

  • Rahman MM, Siikonen T, Miettinen A (1997). A pressure-correction method for solving fluid flow problems on a collocated grid. Numerical Heat Transfer, Part B: Fundamentals, 32: 63–84.

    Article  Google Scholar 

  • Rahman MM, Siikonen T (2006). An explicit algebraic Reynolds stress model in turbulence. International Journal of Numerical Methods in Fluids, 52: 1135–1157.

    Article  MATH  MathSciNet  Google Scholar 

  • Rotta JC (1951). Statistische Theorie Nichthomogener Turbulenz. Zeitschrift fur Physik, 129: 547–572. (in German)

    Article  MATH  MathSciNet  Google Scholar 

  • Smagorinsky J (1963). General circulation experiments with the primitive equations, I. The basic experiment. Monthly Weather Review, 91: 99–164.

    Article  Google Scholar 

  • Stamou A, Katsiris I (2006). Verification of a CFD model for indoor airflow and heat transfer. Building and Environment, 41: 1171–1181.

    Article  Google Scholar 

  • Taghinia J, Rahman MM, Siikonen T, Agarwal RK (2014a). A sub-grid scale model with non-traditional eddy-viscosity coefficient. In: Proceedings of 7th AIAA Theoretical Fluid Mechanics Conference.

    Google Scholar 

  • Taghinia J, Rahman MM, Siikonen T (2014b). Numerical investigation of twin-jet impingement with hybrid-type turbulence modeling. Applied Thermal Engineering, 73: 648–657.

    Article  Google Scholar 

  • Taghinia J, Rahman MM, Siikonen T, Agarwal RK (2015). One-equation subgrid scale model with variable eddy-viscosity coefficient. Computers & Fluids, 107: 155–164.

    Article  MathSciNet  Google Scholar 

  • Winkler CM, Dorgan AJ, Mani M (2011). Scale adaptive simulations of turbulent flows on unstructured grids. In: Proceedings of 20th AIAA Computational Fluid Dynamics Conference, Honolulu, USA.

    Google Scholar 

  • Zhai Z, Zhang Z, Zhang W, Chen Q (2007). Evaluation of various turbulence models in predicting airflow and turbulence in enclosed environments by CFD. Part 1: Summary of prevalent turbulence models. HVAC&R Research, 13: 853–870.

    Article  Google Scholar 

  • Zhang Z, Zhang W, Zhai JZ, Chen Q (2007). Evaluation of various turbulence models in predicting airflow and turbulence in enclosed environments by CFD. Part 2: Comparison with experimental data from literature. HVAC&R Research, 13: 871–886.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javad Taghinia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taghinia, J., Rahman, M. & Siikonen, T. Simulation of indoor airflow with RAST and SST-SAS models: A comparative study. Build. Simul. 8, 297–306 (2015). https://doi.org/10.1007/s12273-015-0213-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12273-015-0213-z

Keywords

Navigation