Skip to main content
Log in

Design, synthesis and pharmacological analysis of 5-[4′-(substituted-methyl)[1,1′-biphenyl]-2-yl]-1H-tetrazoles

  • Research Article
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

In the present paper 5-[4′-({4-[(4-aryloxy)methyl]-1H-1,2,3-triazol-1-yl}methyl)[1,1′-biphenyl]-2-yl]-1H-tetrazoles (5ag) and [2′-(1H-tetrazol-5-yl)[1,1′-biphenyl]-4-yl]methyl-substituted-1-carbodithioates (11hq) have been designed and synthesized. These compounds were subjected to docking (against AT1 receptor protein enzyme in complex with Lisinopril), in vitro angiotensin converting enzyme inhibition, anti-proliferative, anti-inflammatory screening (through egg albumin denaturation inhibition and red blood cell membrane stabilization assay) and finally anti-fungal activity analyses. Some of the compounds have shown significant pharmacological properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Scheme 2
Scheme 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Agalave SG, Maujan SR, Pore VS (2011) Click chemistry: 1,2,3-triazoles as pharmacophores. Chem Asian J 6:2696–2718

    Article  CAS  PubMed  Google Scholar 

  • Aher NG, Pore VS, Mishra NN, Kumar A, Shukla PK, Sharma A, Bhat MK (2009) Synthesis and antifungal activity of 1,2,3-triazole containing fluconazole analogues. Bioorg Med Chem Lett 19:759–763

    Article  CAS  PubMed  Google Scholar 

  • Anosike CA, Obidoa O, Ezeanyika LU (2012) Membrane stabilization as a mechanism of the anti-inflammatory activity of methanol extract of garden egg (Solanum aethiopicum). DARU J Pharm Sci 20:20–76

    Article  Google Scholar 

  • Boyd MR, Paull KD (1995) Some practical consideration and applications of the NCI in vitro drug discovery screen. Drug Dev Res 34:91–109

    Article  CAS  Google Scholar 

  • Bradbury RH, Allot CP, Dennis M, Fisher E, Major JS, Maaek BB, Oldham AA, Pearce RJ, Rankine N, Revill JM, Roberta DA, Russell ST (1992) New nonpeptide angiotensin I1 receptor antagonists. 2. Synthesis, biological properties, and structure-activity relationships of 2-alkyl-4-(biphenylylmethoxy)-quinoline derivatives. J Med Chem 35:4027–4038

    Article  CAS  PubMed  Google Scholar 

  • Buckle DR, Outred DJ, Rockell CJM, Smith H, Spicer BA (1983) Studies on υ-triazoles. 7. Antiallergic 9-oxo-1H, 9H-benzopyrano[2,3-d]-υ-triazoles. J Med Chem 26:251–254

    Article  CAS  PubMed  Google Scholar 

  • Carini DJ, Duncia JV, Aldrich PE, Chiu AT, Johnson AL, Pierce ME, Price WA, Santella JB III (1991) Nonpeptide angiotensin I1 receptor antagonists: the discovery of a series of N-(biphenylylmethy1)imidazoles aa potent, orally active antihypertensives. J Med Chem 34:2525–2547

    Article  CAS  PubMed  Google Scholar 

  • Carta F, Supuran CT (2012) Dithiocarbamates: a new class of carbonic anhydrase inhibitors. Crystallographic and kinetic investigations. Chem Commun 48:1868–1870

    Article  CAS  Google Scholar 

  • Carta F, Aggarwal M, Maresca A, McKenna R, Masini E, Supuran CT (2012) Dithiocarbamates strongly inhibit carbonic anhydrases and show antiglaucoma action in vivo. J Med Chem 55:1721–1730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaitanya R, Sandhya S, David B, Vinod KR, Murali S (2011) HRBC membrane stabilizing property of root, stem and leaf of Glochidion velutinum. Intl J Res Pharm Biomed Sci 2:256–259

    Google Scholar 

  • Chougala BM, Samundeeswari S, Holiyachi M, Shastri LA, Dodamani S, Jalalpure S, Dixit SR, Joshi SD, Sunagar VA (2016) Synthesis, characterization and molecular docking studies of substituted 4-coumarinylpyrano[2,3-c] pyrazole derivatives as potent antibacterial and anti-inflammatory agents. Eur J Med Chem. doi:10.1016/j.ejmech.2016.09.021

    PubMed  Google Scholar 

  • Cockcroft JR, Sciberras DG, Goldberg MR, Ritter JM (1993) Comparison of angiotensin-converting enzyme inhibition with angiotensin II receptor antagonism in the human forearm. J Cardiovasc Pharmacol 22:579–584

    Article  CAS  PubMed  Google Scholar 

  • Cvek B, Dvorak ZT (2007) Targeting of nuclear factor-kappa B and proteasome by dithiocarbamate complexes with metals. Curr Pharm Des 30:3155–3167

    Article  Google Scholar 

  • De GM, Catt KJ, Inagami T, Wright JW, Unger T, International Union of Pharmacology (2000) XXIII. The angiotensin II receptors. Pharmacol Rev 52:415–472

    Google Scholar 

  • delazlo SE, Allen EA, Quagliato CS, Greenlee WJ, Patchett AA, Nachbar RB, Siegl PKS, Chang RS, Kivlighn SD, Schom TS, Faust KA, Chen TB, Zingaro GJ, Lotti VJ (1993) Quinazolinones 2: QSAR and in vivo characterization of AT1 selective AI1 antagonists. Bioorg Med Chem Lett 3:1299–1304

    Article  Google Scholar 

  • Duncia JV, Carini DJ, Chiu AT, Johnson AL, Price WA, Wong PC, Wexler RR, Timmermans PB (1992) The discovery of DuP 753, a potent, orally active nonpeptide angiotensin 11 receptor antagonist. Med Res Rev 12:149–191

    Article  CAS  PubMed  Google Scholar 

  • Gasteiger J, Marsili M (1980) Iterative partial equalization of orbital electronegativity—a rapid access to atomic charges. Tetrahedron 36:3219–3228

    Article  CAS  Google Scholar 

  • Giffin MJ, Heaslet H, Brik A, Lin YC, Cauvi G, Wong CH, McRee DE, Elder JH, Stout CD, Torbett BE (2008) A copper(I)-catalyzed 1,2,3-triazole azide alkyne click compound is a potent inhibitor of a multidrug-resistant HIV-1 protease variant. J Med Chem 51:6263–6270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hester WF, Rohm and Hass Co. (1953) Fungicidal composition. US Patent 2:317, 765. Re-issue no. 23:742

  • Heymes C, Levy BI (1998) Fonctions du recepteur AT2 de l’Angiotensine II. Therapie 53:213–216

    CAS  PubMed  Google Scholar 

  • http://dtp.nci.nih.gov/docs/compare/compare.html. Accessed 21 April 2016

  • Huang W, Ding Y, Miao Y, Liu MZ, Li Y, Yang GF (2009) Synthesis and antitumor activity of novel dithiocarbamate substituted chromones. Eur J Med Chem 44:3687–3696

    Article  CAS  PubMed  Google Scholar 

  • Imamura H, Ohtake N, Nagano R, Abe S, Yamada K, Hashizume T, Morishima H (2001) Dicationic dithiocarbamate carbapenems with anti-MRSA activity. Bioorg Med Chem 9:1571–1578

    Article  CAS  PubMed  Google Scholar 

  • Jagtap VA, Agasimundim YS, Jayachandran E, Sathe BS (2011) In vitro anti-inflammatory activity of 2-amino-3-(substituted-benzylidinecarbohydrazide)-4,5,6,7-tetrahydrobenzothiophenes. J Pharm Res 4:378–379

    CAS  Google Scholar 

  • Jain ZJ, Gide PS, Kankate RS (2013) Arab J Chem. doi:10.1016/j.arabjc.2013.07.035

    Google Scholar 

  • Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61:69–90

    Article  PubMed  Google Scholar 

  • Kolb HC, Sharpless KB (2009) The growing impact of click chemistry on drug discovery. Drug Discov Today 8:1128–1137

    Article  Google Scholar 

  • Len C, Boulogne-merlot AS, Postel D, Ronco G, Villa P, Goubert C, Jeufrault E, Mathon B, Simon H (1996) Synthesis and antifungal activity of novel bis(dithiocarbamate) derivatives of glycerol. J Agric Food Chem 44:2856–2858

    Article  CAS  Google Scholar 

  • Mareel M, Leroy A (2003) Clinical, cellular, and molecular aspects of cancer invasion. Physiol Rev 83(2):337–376

    Article  CAS  PubMed  Google Scholar 

  • Meldal M, Tornøe CW (2008) Cu-catalyzed azide–alkyne cycloaddition. Chem Rev 108:2952–3015

    Article  CAS  PubMed  Google Scholar 

  • Meti GY (2014) Synthetic studies on nitrogen and oxygen heterocycles and their pharmacological evaluation. Thesis, Karnatak University Dharwad

  • Meti GY, Kamble RR, Biradar DB, Margankop SB (2013) Synthesis of biphenyl derivatives as ACE and α-amylase inhibitors. Med Chem Res 22:5868–5877

    Article  CAS  Google Scholar 

  • Mounnissamy VM, Kavimani S, Balu V, Drlin QS (2008) Evaluation of anti-inflammatory and membrane stabilizing properties of ethanol extract of Canjerarehedi. Iran J Pharmacol Ther 6:235–237

    Google Scholar 

  • Opie EL (1962) On the relation of necrosis and inflammation to denaturation of proteins. J Exp Med 115:597–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perianayagam JB, Sharma SK, Pillai SK (2006) Anti-inflammatory activity of Trichodesma indicum root extract in experimental animals. J Ethnopharmacol 104:410–414

    Article  PubMed  Google Scholar 

  • Renard JF, Hubert FP, de Leval X, Pirotte B (2014) N-(3-arylaminopyridin-4-yl) alkane sulfonamides as pyridine analogs of nimesulide: cyclooxygenases inhibition, anti-inflammatory studies and insight on metabolism. Eur J Med Chem 74:12–22

    Article  CAS  PubMed  Google Scholar 

  • Shaikh MH, Subhedar DD, Nawale L, Sarkar D, Kalam Khan FA, Sangshetti JN, Shingate BB (2015) 1,2,3-Triazole derivatives as antitubercular agents: synthesis, biological evaluation and molecular docking study. Med Chem Commun 6:1104–1116

    Article  CAS  Google Scholar 

  • Shi Y, Zhou CH (2011) Synthesis and evaluation of a class of new coumarin triazole derivatives as potential antimicrobial agents. Bioorg Med Chem Lett 21:956–960

    Article  CAS  PubMed  Google Scholar 

  • Simone RD, Chini MG, Bruno I, Riccio R, Mueller D, Werz O, Bifulco G (2011) Structure-based discovery of inhibitors of microsomal prostaglandin E2 synthase-1,5-lipoxygenase and 5-lipoxygenase-activating protein: promising hits for the development of new anti-inflammatory agents. J Med Chem 54:1565–1575

    Article  PubMed  Google Scholar 

  • Soubani AO, Chandrasekar PH (2002) The clinical spectrum of pulmonary aspergillosis. Chest 121:1988–1999

    Article  PubMed  Google Scholar 

  • Timmermans PB, Benfield P, Chiu AT, Herblin WF, Wong PC, Smith RD (1992) Angiotensin II receptors and functional correlates. Am J Hypertens 5:221S–235S

    Article  CAS  PubMed  Google Scholar 

  • Tripos International (2012) Sybyl-X 2.0. Tripos International, St. Louis

    Google Scholar 

  • Umapathy E, Ndebia EJ, Meeme A, Adam B, Menziwa P, Nkeh-Chungag BN, Iputo JE (2010) An experimental evaluation of Albuca setosa aqueous extract on membrane stabilization, protein denaturation and white blood cell migration during acute inflammation. J Med Plants Res 4:789–795

    Google Scholar 

  • Vallotton MB (1987) The renin-angiotensin system. Trends Pharmacol Sci 8:69–74

    Article  CAS  Google Scholar 

  • Wang XL, Wan K, Zhou CH (2010) Synthesis of novel sulfanilamide-derived 1,2,3-triazoles and their evaluation for antibacterial and antifungal activities. Eur J Med Chem 45:4631–4639

    Article  CAS  PubMed  Google Scholar 

  • Wesche J, Haglund K, Haugsten EM (2011) Fibroblast growth factors and their receptors in cancer. Biochem J 437(2):199–213

    Article  CAS  PubMed  Google Scholar 

  • Williams LAD, O’Connar A, Latore L, Dennis O, Ringer S, Whittaker JA (2008) The in vitro anti-denaturation effects induced by natural products and non-steroidal compounds in heat treated (immunogenic) bovine serum albumin is proposed as a screening assay for the detection of anti-inflammatory compounds, without the use of animals, in the early stages of the drug discovery process. West Indian Med J 57:327–331

    CAS  PubMed  Google Scholar 

  • Zhang Z, Rigas B (2006) NF-kappaB, inflammation and pancreatic carcinogenesis: NF-kappaB as a chemoprevention target (review). Intl J Oncol 29:185–192

    CAS  Google Scholar 

  • Zmeili OS, Soubani AO (2007) Pulmonary aspergillosis: a clinical update. Q J Med 100:317–334

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge BioGenics, Hubballi for carrying out ACE-inhibition activity and National Cancer Institute, NIH, Bethesda, USA for anti-proliferative activity analyses under DTP Program. The authors are also grateful to authorities of Dr. Prabhakar Kore Basic Science Research Centre Belgaum, Karnataka, India for anti-inflammatory and antifungal activity assay. The authors wish to thank the University Scientific Instrumentation Centre (USIC), Karnataka University, Dharwad, NMR Research Centre, Indian Institute of Science (IISc), Bengaluru, India for carrying out the spectral analyses. Authors also thank University Grants Commission, New Delhi for providing financial assistants under DSA: F-540/2/DSA/2013(SAP-I), UGC-UPE “Antitumor activity: An Integrated Approach” vide F. No. 14-3/2012 (NS/PE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravindra Kamble.

Ethics declarations

Conflict of interest

The authors have declared no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2341 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamble, A., Kamble, R., Dodamani, S. et al. Design, synthesis and pharmacological analysis of 5-[4′-(substituted-methyl)[1,1′-biphenyl]-2-yl]-1H-tetrazoles. Arch. Pharm. Res. 40, 444–457 (2017). https://doi.org/10.1007/s12272-017-0887-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-017-0887-0

Keywords

Navigation