Skip to main content
Log in

Preparation and performance evaluation of emulsomes as a drug delivery system for silybin

  • Research Article
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

We developed silybin (SIL) emulsomes and evaluated their physicochemical properties and the in vivo pharmacokinetics of SIL delivered by emulsomes in rats. SIL emulsomes were prepared using the thin film dispersion method. SIL emulsomes were evaluated for their entrapment efficiency, particle size, zeta potential, morphology, in vitro release, and in vivo drug delivery in rats. The entrapment efficiency was above 80 %. The average particle size and zeta potential were 364.1 ± 20 nm and −34 ± 8 mV, respectively. Morphological analysis revealed that the SIL emulsomes were spherical in shape. Compared to an SIL solution, emulsomes produced sustained release of SIL for up to 48 h after an initial burst release in vitro. The pharmacokinetics of SIL emulsomes in rats were evaluated after intravenous injection, and the results were compared with those obtained for the control SIL solution. Following SIL delivery by emulsomes, the area under the curve was 2.2-fold higher and the mean residence time was 2.5-fold higher than the corresponding values recorded using SIL solution. Hence, emulsomes might represent a promising system for improving the bioavailability of lipophilic drugs. Moreover, emulsomes produce sustained drug release, which is advantageous in the clinical setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ali, S.O., H.A. Darwish, and N.A. Ismail. 2014. Modulatory effects of curcumin, silybin-phytosome and alpha-R-lipoic acid against thioacetamide-induced liver cirrhosis in rats. Chemico Biological Interactions 216: 26–33.

    Article  CAS  PubMed  Google Scholar 

  • Angelico, R., A. Ceglie, P. Sacco, G. Colafemmina, M. Ripoli, and A. Mangia. 2014. Phyto-liposomes as nanoshuttles for water-insoluble silybin-phospholipid complex. International Journal of Pharmaceutics 471: 173–181.

    Article  CAS  PubMed  Google Scholar 

  • Arcan, M., and A. Brambilla. 1992. A new inclusion complex of silibinin and beta-cyclodextrins: in vitro dissolution kinetics and in vivo absorption in comparison with traditional formulations. Bollettino Chimico Farmaceutico 6: 205–295.

    Google Scholar 

  • Bai, T.C., G.B. Yan, J. Hu, H.L. Zhang, and C.G. Huang. 2006. Solubility of silybin in aqueous poly (ethylene glycol) solution. International Journal of Pharmaceutics 308: 100–106.

    Article  CAS  PubMed  Google Scholar 

  • Bai, T.C., J.J. Zhu, J. Hu, H.L. Zhang, and C.J. Huang. 2007. Solubility of silybin in aqueous hydrochloric acid solution. Fluid Phase Equilibria 254: 204–210.

    Article  CAS  Google Scholar 

  • Berman, M., A. Erman, G.T. Ben, D. Dvir, G.P. Georghiou, A. Stamler, Y. Vered, B.A. Vidne, and D. Aravot. 2004. Coenzyme Q10 in patients with end-stage heart failure awaiting cardiac transplantation: a randomized, placebo-controlled study. Clinical Cardiology 27: 295–299.

    Article  PubMed  Google Scholar 

  • Bonepally, C.R., S.J. Gandey, K. Bommineni, K.M. Gottumukkala, and J. Aukunuru. 2013. Preparation, characterisation and in vivo evaluation of silybin nanoparticles for the treatment of liver fibrosis. Tropical Journal of Pharmaceutical Research 1: 1–6.

    Google Scholar 

  • Cao, X., W. Deng, M. Fu, Y. Zhu, H. Liu, L. Wang, J. Zeng, Y. Wei, X. Xu, and J. Yu. 2013. Seventy-two-hour release formulation of the poorly soluble drug silybin based on porous silica nanoparticles: In vitro release kinetics and in vitro/in vivo correlations in beagle dogs. European Journal of Pharmaceutical Sciences 48: 64–71.

    Article  CAS  PubMed  Google Scholar 

  • Chen, L., H.L. Zhu, S. Yang, B.B. Zhou, F.H. You, and X.M. Yan. 2015. Nanostructured calcium phosphate carriers for delivery of poor water-soluble drug silybin. Materials Letters 143: 252–255.

    Article  CAS  Google Scholar 

  • Cui, G.J., X.Y. Zhou, J.J. Zhang, J.X. Wang, and J.X. Chen. 2013. Microfluidic fabrication of silybin nanodispersion with high dissolution rate and tunable sizes. Chemical Engineering Journal 222: 512–519.

    Article  CAS  Google Scholar 

  • Dube, D., K. Khatri, A.K. Goyal, N. Mishra, and S.P. Vyas. 2010. Preparation and evaluation of galactosylated vesicular carrier for hepatic targeting of silibinin. Drug Development and Industrial Pharmacy 5: 547–555.

    Article  Google Scholar 

  • Gándara, L., E. Sandes, V.G. Di, M. Prack, B. Cormick, L. Rodriguez, L. Mamone, A. Batlle, A.M. Eiján, and A. Casas. 2014. The natural flavonoid silybin improves the response to Photodynamic Therapy of bladder cancer cells. Journal of Photochemistry and Photobiology B 133: 55–64.

    Article  Google Scholar 

  • Gazák, R., A. Svobodová, J. Psotová, P. Sedmera, V. Prikrylová, D. Walterová, and V. Kren. 2004. Oxidised derivatives of silybin and their antiradical and antioxidant activity. Bioorganic and medicinal chemistry 12: 5677–5687.

    Article  PubMed  Google Scholar 

  • Gazák, R., K. Purchartová, P. Marhol, L. Zivná, P. Sedmera, K. Valentová, N. Kato, H. Matsumura, K. Kaihatsu, and V. Kren. 2010. Antioxidant and antiviral activities of silybin fatty acid conjugates. European Journal of Medicinal Chemistry 45: 1059–1067.

    Article  PubMed  Google Scholar 

  • Giovanna, G., H. Hervé, and F. Elias. 2015. Improving bioavailability and biodistribution of anti-HIV chemotherapy. European Journal of Pharmaceutical Sciences 75: 40–53.

    Article  Google Scholar 

  • Gupta, S., A. Dube, and S.P. Vyas. 2007. Antileishmanial efficacy of amphotericin B bearing emulsomes against experimental visceral leishmaniasis. Journal of Drug Targeting 15: 437–444.

    Article  CAS  PubMed  Google Scholar 

  • Gupta, S., and S.P. Vyas. 2007. Development and characterization of amphotericin B bearing emulsomes for passive and active macrophage targeting. Journal of Drug Targeting 15: 206–217.

    Article  CAS  PubMed  Google Scholar 

  • Jia, L.J., D.R. Zhang, Z.Y. Li, C.X. Duan, Y.C. Wang, F.F. Feng, F.H. Wang, Y. Liu, and Q. Zhang. 2010. Nanostructured lipid carriers for parenteral delivery of silybin: Biodistribution and pharmacokinetic studies. Colloid Surface B 80: 213–218.

    Article  CAS  Google Scholar 

  • Kretschmar, M., S. Amselem, E. Zawoznik, K. Mosbach, A. Dietz, H. Hof, and T. Nichterlein. 2001. Efficient treatment of murine systemic infection with Candida albicans using amphotericin B incorporated in nanosize range particles (emulsomes). Mycoses 44: 281–286.

    Article  CAS  PubMed  Google Scholar 

  • Lee, J.I., B.H. Hsu, D. Wu, and J.S. Barrett. 2006. Separation and characterization of silybin, isosilybin, silydianin and silychristin in milk thistle extract by liquid chromatography-electrospray tandem mass spectrometry. Journal of Chromatography A 16: 57–68.

    Article  Google Scholar 

  • Lettéron, P., G. Labbe, C. Degott, A. Berson, B. Fromenty, M. Delaforge, D. Larrey, and D. Pessayre. 1990. Mechanism for the protective effects of silymarin against carbon tetrachloride-induced lipid peroxidation and hepatotoxicity in mice: Evidence that silymarin acts both as an inhibitor of metabolic activation and as a chain-breaking antioxidant. Biochemical Pharmacology 39: 2027–2034.

    Article  PubMed  Google Scholar 

  • Li, Y.C., L. Dong, A. Jia, X.M. Chang, and H. Xue. 2006. Comparative studies of silibinin contained solid lipid nanoparticles prepared by two methods. Journal of the Fourth Military Medical University 23: 2150–2152.

    Google Scholar 

  • Lian, Y., Y. Du, L.H. Tian, Y. Zhao, J. Su, W.T. Sun, Y. Ping, S.J. Liu, and L.N. Ma. 2013. Preparation of silybin solid lipid nanoparticle modified by folic acid and its inhibitory effect on A549 cells. Chinese Traditional Herbal Drugs 2: 158–164.

    Google Scholar 

  • Liu, L., X. Pang, W. Zhang, and S. Wang. 2007. Formulation design and in vitro evaluation of silymarin-loaded self-microemulsifying drug delivery systems. Asian Journal of Pharmacology 2: 150–160.

    Article  CAS  Google Scholar 

  • Lowell, G.H., R.W. Kaminski, T.C. VanCott, B. Slike, K. Kersey, E. Zawoznik, P.L. Loomis, G. Smith, R.R. Redfield, S. Amselem, and D.L. Birx. 1997. Proteosomes, emulsomes, and cholera toxin B improve nasal immunogenicity of human immunodeficiency virus gp160 in mice: induction of serum, intestinal, vaginal, and lung IgA and IgG. Journal of Infectious Diseases 2: 292–301.

    Article  Google Scholar 

  • Luan, J.J., D.R. Zhang, L.L. Hao, L.S. Qia, X.Q. Liu, H.J. Guo, C.Y. Lia, Y.Y. Guo, T. Li, Q. Zhang, and G. Zhai. 2014. Preparation, characterization and pharmacokinetics of Amoitone B-loaded long circulating nanostructured lipid carriers. Colloid Surface B 114: 255–260.

    Article  CAS  Google Scholar 

  • Ojewole, E., I. Mackraj, P. Naidoo, and T. Govender. 2008. Exploring the use of novel drug delivery systems for antiretroviral drugs. European Journal of Pharmaceutics and Biopharmaceutics 70: 697–710.

    Article  CAS  PubMed  Google Scholar 

  • Pal, A., S. Gupta, A. Jaiswal, A. Dube, and S.P. Vyas. 2012. Development and evaluation of tripalmitin emulsomes for the treatment of experimental visceral leishmaniasis. Journal of Liposome Research 22: 62–71.

    Article  CAS  PubMed  Google Scholar 

  • Paliwal, R., S.R. Paliwal, N. Mishra, A. Mehta, and S.P. Vyas. 2009. Engineered chylomicron mimicking carrier emulsome for lymph targeted oral delivery of methotrexate. International Journal of Pharmaceutics 380: 181–188.

    Article  CAS  PubMed  Google Scholar 

  • Raza, S.S., M.M. Khan, M. Ashafaq, A. Ahmad, G. Khuwaja, A. Khan, M.S. Siddiqui, M.M. Safhi, and F. Islam. 2011. Silymarin protects neurons from oxidative stress associated damages in focal cerebral ischemia: A behavioral, biochemical and immunohistological study in Wistar rats. Journal of the Neurological Sciences 309: 45–54.

    Article  CAS  PubMed  Google Scholar 

  • Sersen, F., T. Vencel, and J. Annus. 2006. Silymarin and its components scavenge phenylglyoxylic ketyl radicals. Fitoterapia 77: 525–529.

    Article  CAS  PubMed  Google Scholar 

  • Serviddio, G., F. Bellanti, E. Stanca, P. Lunetti, M. Blonda, R. Tamborra, L. Siculella, G. Vendemiale, L. Capobianco, and A.M. Giudetti. 2014. Silybin exerts antioxidant effects and induces mitochondrial biogenesis in liver of rat with secondary biliary cirrhosis. Free Radical Biology and Medicine 73: 117–126.

    Article  CAS  PubMed  Google Scholar 

  • Singh, R.P., and R. Agarwal. 2004. Prostate cancer prevention by silibinin. Current Cancer Drug Targets 4: 1–11.

    Article  CAS  PubMed  Google Scholar 

  • Stanca, E., G. Serviddio, F. Bellanti, G. Vendemiale, L. Siculella, and A.M. Giudetti. 2013. Down-regulation of LPCAT expression increases platelet-activating factor level in cirrhotic rat liver: Potential antiinflammatory effect of silybin. BBA General Subjects 1832: 2019–2026.

    CAS  PubMed  Google Scholar 

  • Tedesco, D., A. Tava, S. Galletti, M.G. Tameni, G. Varisco, A. Costa, and S. Steidler. 2004. Effects of silymarin, a natural hepatoprotector, in periparturient dairy cows. Journal of Dairy Science 87: 2239–2247.

    Article  CAS  PubMed  Google Scholar 

  • Ucisik, M.H., S. Küpcü, B. Schuster, and U.B. Sleytr. 2013a. Characterization of CurcuEmulsomes: nanoformulation for enhanced solubility and delivery of curcumin. Journal of Nanobiotechnology 11: 37–40.

    Article  PubMed Central  PubMed  Google Scholar 

  • Ucisik, M.H., S. Küpcü, M. Debreczeny, B. Schuster, and U.B. Sleytr. 2013b. S-layer coated emulsomes as potential nanocarriers. Small 9: 2895–2904.

    Article  CAS  PubMed  Google Scholar 

  • Ucisik, M.H., U.B. Sleytr, and B. Schuster. 2015. Emulsomes meet S-layer proteins: An emerging targeted drug delivery system. Current Pharmaceutical Biotechnology 4: 392–405.

    Article  Google Scholar 

  • VanCott, T.C., R.W. Kaminski, J.R. Mascola, V.S. Kalyanaraman, N.M. Wassef, C.R. Alving, J.T. Ulrich, G.H. Lowell, and D.L. Birx. 1998. HIV-1 neutralizing antibodies in the genital and respiratory tracts of mice intranasally immunized with oligomeric gp160. Journal of Immunology 160: 2000–2012.

    CAS  Google Scholar 

  • Vyas, S.P., R. Subhedar, and S. Jain. 2006. Development and characterization of emulsomes for sustained and targeted delivery of an antiviral agent to liver. Journal of Pharmacy and Pharmacology 58: 321–326.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y., D. Zhang, Z. Liu, G. Liu, C. Duan, L. Jia, F. Feng, X. Zhang, Y. Shi, and Q. Zhang. 2010. In vitro and in vivo evaluation of silybin nanosuspensions for oral and intravenous delivery. Nanotechnology 21: 155104.

    Article  PubMed  Google Scholar 

  • Wang, Y., L. Wang, Z. Liu, D. Zhang, and Q. Zhang. 2012. In vivo evaluation of silybin nanosuspensions targeting liver. Journal of Biomedical Nanotechnology 5: 760–769.

    Article  Google Scholar 

  • Wei, Y.H., X.L. Ye, X.G. Shang, X. Peng, Q. Bao, M.C. Liu, M.M. Guo, and F.Z. Li. 2012. Enhanced oral bioavailability of silybin by a supersaturatable self-emulsifying drug delivery system (S-SEDDS). Colloid Surface A 396: 22–28.

    Article  CAS  Google Scholar 

  • Woo, J.S., T.S. Kim, J.H. Park, and S.C. Chi. 2007. Formulation and biopharmaceutical evaluation of silymarin using SMEDDS. Archives of pharmacal research 1: 82–89.

    Article  Google Scholar 

  • Xiao, Y.Y., Y.M. Song, Z.P. Chen, and Q.N. Ping. 2006. The preparation of silybin–phospholipid complex and the study on its pharmacokinetics in rats. International Journal of Pharmaceutics 307: 77–82.

    Article  CAS  Google Scholar 

  • Xu, P.F., Q. Yin, J.N. Shen, L.L. Chen, H.J. Yu, Z.W. Zhang, and Y.P. Li. 2013. Synergistic inhibition of breast cancer metastasis by silibinin-loaded lipid nanoparticles containing TPGS. International Journal of Pharmaceutics 454: 21–30.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, J.Q., J. Liu, X.L. Li, and B.R. Jasti. 2007. Preparation and characterization of solid lipid nanoparticles containing silibinin. Drug Delivery 6: 381–387.

    Article  Google Scholar 

  • Zheng, D., Y. Wang, D. Zhang, Z. Liu, C. Duan, L. Jia, F. Wang, Y. Liu, G. Liu, L. Hao, and Q. Zhang. 2011. In vitro antitumor activity of silybin nanosuspension in PC-3 cells. Cancer Letters 307: 158–164.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Department of Pharmacy, Henan University, Kaifeng, China, for its support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaodan Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest to disclose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, X., Chen, Z. Preparation and performance evaluation of emulsomes as a drug delivery system for silybin. Arch. Pharm. Res. 38, 2193–2200 (2015). https://doi.org/10.1007/s12272-015-0630-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-015-0630-7

Keywords

Navigation