Skip to main content
Log in

Formulation and biopharmaceutical evaluation of silymarin using SMEDDS

  • Articles
  • Drug Efficacy
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Silymarin has been used to treat hepatobiliary diseases. However, it has a low bioavailability after being administered orally on account of its low solubility in water. In order to improve the dissolution rate, silymarin was formulated in the form of a self-microemulsifying drug delivery system (SMEDDS). The optimum formulation of SMEDDS containing silymarin was obtained based on the study of pseudo-ternary phase diagram. The SMEDDS consisted of 15% silymarin, 10% glyceryl monooleate as the oil phase, a mixture of polysorbate 20 and HCO-50 (1:1) as the surfactant, Transcutol as the cosurfactant with a surfactant/cosurfactant ratio of 1. The mean droplet size of the oil phase in the microemulsion formed from the SMEDDS was 67 nm. The % release of silybin from the SMEDDS after 6 hours was 2.5 times higher than that from the reference capsule. After its oral administration to rats, the bioavailability of the drug from the SMEDDS was 3.6 times higher than the reference capsule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arcari, M., Brambilla, A., Brandt, A., Caponi, R., Corsi, G., and Di Rella, M., A new inclusion complex of silibinin and β-cyclodextrins:in vitro dissolution kinetics andin vivo absorption in comparison with traditionl formulations.Boll Chim. Farm., 131, 205–209 (1992).

    PubMed  CAS  Google Scholar 

  • Attwood, D. and Florence, A. T., Surfactant Systems: Their Chemistry, Pharmacy and Biology. Chapman and Hall, New York, pp. 236–237 (1983).

    Google Scholar 

  • Attwood, D., Microemulsion. Kreuter, J. (Ed.), Colloidal Drug Delivery Systems, Marcel Dekker, New York, pp. 31–65 (1994).

    Google Scholar 

  • Barzaghi, N., Crema, F., Gatti, G., Pifferi, G., and Perucca, E., Pharmacokinetic studies on IdB 1016, a silybin-phosphaidyl-choline complex, in healthy human subjects.Eur. J. Drug Metab. Pharmacokinet, 15, 333–338 (1990).

    PubMed  CAS  Google Scholar 

  • Basaga, H., Poli, G., Tekkaya, C., and Aras, I., Free radical scavenging and antioxidative properties of “silibin” complexs on microsomal lipid peroxidation.Cell Biochem. Funct., 15, 27–33 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Chen, W., Xia, H., and Wu, W., Optimized preparation of silymarin dripping pills by a central composite design-response surface method.Chin. Trad. Herb. Drug, 36, 679–683 (2005).

    Google Scholar 

  • Chi, S. C., Enhanced dissolution rate of biphenyl dimethyl dicarboxylate using SMEDDS.B.T. Gattefosse, 92, 75–80 (1999).

    Google Scholar 

  • Constantinides, P. P. and Scalart, J. P., Formulation and physical characterization of water-in-oil microemulsions containing long- versus medium-chain glycerides.Int. J. Pharm., 158, 57–68 (1997).

    Article  CAS  Google Scholar 

  • Dewick, P. M., Medicinal Natural Products, John Wiley & Sons, New York, pp. 138–140 (1997).

    Google Scholar 

  • Fitnleman, V., Mordern phytotherapy and its use in Gastrointestinal Conditions, Planta Med., 57, Supplement Issue 1, S50 (1991).

  • Flora, K., Hahn, M., Rosen, H., and Benner, K., Milk thistle(Silybum marianum) for the therapy of liver disease.Am. J. Gastroenterol., 93, 139–143 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Gasco, M. R., Microemulsions in the pharmaceutical field: perspectives and applications. In: C. Solans, H. Kunieda, eds. Industrial applications of Microemulsions. New York: Marcel Dekker, pp. 97–122 (1997).

    Google Scholar 

  • Gattefosse, Formulation guide, Microemulsions. 9,1 (1994).

  • Gažák, R., Svobodová, A., Psotová, J., Sedmerá, P., Prikrylová, V., Walterová, and D., Krn, V., Oxidised derivatives of silybin and their antiradical and antioxidant activity.Bioorg. Med. Chem., 12, 5677–5687 (2004).

    Article  PubMed  Google Scholar 

  • Georgakopoulos, E., Farah, N., and Vergnault, G., Oral anhydrous nonionic microemulsions administrated in softgel capsules.Gattefosse, B.T., 85, 11–20 (1992/93).

    Google Scholar 

  • Gibaldi, M. and Perrier, D., One compartment model. In: Pharmacokinetics, 2nd Ed., Ed : Swarbrick, J., Dekker, M., New York, pp. 1–43 (1982).

  • Humberstone, A. J. and Charman, W. N., Lipid-based vehicles for the oral delivery of poorly water soluble drugs.Adv. Drug Deliv. Rev., 25, 103–128 (1997).

    Article  CAS  Google Scholar 

  • Kang, B. K., Lee, J. S., Chon, S. K., Jeong, S. Y., Yuk, S. H., Khang, G., Lee, H. B., and Cho, S. H., Development of self-microemulsifying drug delivery systems (SMEDDS) for oral bioavailability enhancement of simvastatin in beagle dogs.Int. J. Pharm., 21 A, 65–73 (2004).

    Article  Google Scholar 

  • Kim, C. K. and Park, J. S., Solubility enhancers for oral drug delivery: can chemical structure manipulation be avoided?Am. J. Drug Deliv., 2, 113–130 (2004).

    Article  CAS  Google Scholar 

  • Kim, H. J., Yoon, K. A., Hahn, M. K., Park, E. S., and Chi, S. C., Preparation and In vitro evaluation of self-microemulsifying drug delivery systems containing idebenon.Drug Develop. Ind. Pharm., 26, 523–529 (2000).

    Article  CAS  Google Scholar 

  • Koo, C. H., Compositions and preparations of silymarin complex with the improved bioavailability. WO 02/069962 (2002).

    Google Scholar 

  • Kvasnicka, R, Biba, B., Sevcik, R., Voldrich, M., and Kratka, J., Analysis of the active components of silymarin.J. Chromatogr. A., 990, 239–245 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Lawrence, M. J. and Rees, G. D., Microemulsion-based media as novel drug delivery systems.Adv. Drug Deliv. Rev., 45, 89–121 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Lorenz, D., Lucker, P. W., Mennicke, W. H., and Wetzelsberger, N., Pharmacokinetics studies with silymarin in human serum and bile.Meth. And Find. Exptl. Clin. Pharmacol., 6, 665–661 (1984).

    Google Scholar 

  • Mayer, D., Surfactant Science and Technology. VCH Publishers, Inc., pp. 174–175(1988).

  • Morazzoni, P., Magistretti, M. J., Giachetti, C., and Zanolo, G., Comparative bioavailability of silipide, a new flavanolignan complex, in rats.Eur. J. Drug Metab. Pharmacokinet., 17, 39–44 (1992).

    PubMed  CAS  Google Scholar 

  • Morazzoni, P., Montalbetti, A., Malandrino, S., and Pifferi, G., Comparative pharmacokinetics of silipide and silymarin in rats.Eur. J. Drug Metab. Pharmacokinet, 18, 289–297 (1993).

    PubMed  CAS  Google Scholar 

  • Morazzoni, P. and Bombardelli, E., Silybum marianum(carduus mahanus). Fitoterapia, 66, 3–42 (1995).

    CAS  Google Scholar 

  • Ni, N., Sanghvi, T., and Yalkowsky, S. H., Solubilization and preformulation of carbendazim.Int. J. Pharm., 244, 99–104 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Pouton, C. W., Formulation of self-emulsifying drug delivery systems.Adv. Drug Deliv Rev, 25, 47–58 (1997).

    Article  CAS  Google Scholar 

  • Rickling, B., Hans, B., Kramarczyk, R., Krumbiegel, G., and Weyhenmeyer, R., Two high-performance liquid chromato-graphic assays for the determination of free and total silibinin diastereomers in plasma using column switching with electrochemical detection and reversed-phase chromatography with ultraviolet detection.J. Chromatogr. B., 670, 267–277 (1995).

    Article  CAS  Google Scholar 

  • Schandalik, R. and Perucca, E., Pharmacokinetics of silybin following oral administration of silipide in patients with extrahepatic biliary obstruction.Drugs Explt. Clin. Res., XX, 37–42 (1994).

    Google Scholar 

  • Schulman, J. H., Stoekenius, W., and Prince, L. M. J., Mechanism of formation and structure of microemulsions by electron microscopy.Phys. Chem., 63, 1677–1678 (1959).

    Article  CAS  Google Scholar 

  • Schulz, H. U., Schurer, M., Krumbiegel, G., Watcher, W., Weyhenmeyer, R., and Seidel, G., The solubility and bioequi-valence of silymarin preparations.Arzneimittelforschung, 45, 61–64 (1995).

    PubMed  CAS  Google Scholar 

  • Shah, N. H., Carvajal, M. T, Patel, C. I., Infeld, M. H., and Malick, A. W., Self-emulsifying drug delivery system (SEDDS) with polyglycolysed glycerides for improvingin vitro dissolution and oral absorption of lipophilic drugs.Int. J. Pharm., 106, 15–23 (1994).

    Article  CAS  Google Scholar 

  • Sinko, P. J., Martin’s Physical Pharmacy and Pharmaceutical Sciences, Lippincott Williams & Wilkins, pp. 509–519 (2006).

  • Skottova, N., Kreeman, V, Vaoa, P., Chmela, Z., Ulrichova, J., and Simanek, V., Effect of silymarin and silibinin-phosphati-dylcholine complex on plasma and lipoprotein cholesterol, and oxidation of LDL in rats fed on high cholesterol diet supplemented with current oil. Acta Univ. Palacki Olomuc. Fac. Med., 144, 55–58 (2000).

    CAS  Google Scholar 

  • Tarr, B. D. and Yalkowsky, S. H., Enhanced intestinal absorption of cyclosporine in rats through the reduction of emulsion droplet size.Pharm. Res., 6, 40 (1989).

    Article  PubMed  CAS  Google Scholar 

  • Torrado, S., Lopez, M.L., Torrado, G, Bol’as, F., Torrado, S., and Cad’omiga, R., A novel formulation of albendazole solution: oral bioavailability and efficacy evaluation.Int. J. Pharm., 156, 181–187 (1997).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang-Cheol Chi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Woo, J.S., Kim, TS., Park, JH. et al. Formulation and biopharmaceutical evaluation of silymarin using SMEDDS. Arch Pharm Res 30, 82–89 (2007). https://doi.org/10.1007/BF02977782

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02977782

Key words

Navigation