Skip to main content

Advertisement

Log in

Targeting NADPH oxidases for the treatment of cancer and inflammation

  • Multi-author review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

NADPH oxidases are a family of oxidases that utilize molecular oxygen to generate hydrogen peroxide and superoxide, thus indicating physiological functions of these highly reactive and short-lived species. The regulation of these NADPH oxidases (nox) enzymes is complex, with many members of this family exhibiting complexity in terms of subunit composition, cellular location, and tissue-specific expression. While the complexity of the nox family (Nox1–5, Duox1, 2) is daunting, the complexity also allows for targeting of NADPH oxidases in disease states. In this review, we discuss which inflammatory and malignant disorders can be targeted by nox inhibitors, as well as clinical experience in the use of such inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Al DR, Powell J, McCuaig C, Kokta V (2010) Differentiation of vascular tumors from vascular malformations by expression of Wilms tumor 1 gene: evaluation of 126 cases. J Am Acad Dermatol 63:1052–1057

    Article  Google Scholar 

  2. Arbiser JL, Govindarajan B, Bai X, Onda H, Kazlauskas A, Lim SD, Amin MB, Claesson-Welsh L (2002) Functional tyrosine kinase inhibitor profiling: a generally applicable method points to a novel role of platelet-derived growth factor receptor-beta in tuberous sclerosis. Am J Pathol 161:781–786

    Article  PubMed  CAS  Google Scholar 

  3. Arbiser JL, Moses MA, Fernandez CA, Ghiso N, Cao Y, Klauber N, Frank D, Brownlee M, Flynn E, Parangi S, Byers HR, Folkman J (1997) Oncogenic H-ras stimulates tumor angiogenesis by two distinct pathways. Proc Natl Acad Sci USA 94:861–866

    Article  PubMed  CAS  Google Scholar 

  4. Arbiser JL, Petros J, Klafter R, Govindajaran B, McLaughlin ER, Brown LF, Cohen C, Moses M, Kilroy S, Arnold RS, Lambeth JD (2002) Reactive oxygen generated by Nox1 triggers the angiogenic switch. Proc Natl Acad Sci USA 99:715–720

    Article  PubMed  CAS  Google Scholar 

  5. Balasubramanian A, Ganju RK, Groopman JE (2003) Hepatitis C virus and HIV envelope proteins collaboratively mediate interleukin-8 secretion through activation of p38 MAP kinase and SHP2 in hepatocytes. J Biol Chem 278:35755–35766

    Article  PubMed  CAS  Google Scholar 

  6. Bedard K, Krause KH (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87:245–313

    Article  PubMed  CAS  Google Scholar 

  7. Bhandarkar SS, Jaconi M, Fried LE, Bonner MY, Lefkove B, Govindarajan B, Perry BN, Parhar R, Mackelfresh J, Sohn A, Stouffs M, Knaus U, Yancopoulos G, Reiss Y, Benest AV, Augustin HG, Arbiser JL (2009) Fulvene-5 potently inhibits NADPH oxidase 4 and blocks the growth of endothelial tumors in mice. J Clin Invest 119:2359–2365

    PubMed  CAS  Google Scholar 

  8. Block K, Gorin Y, Hoover P, Williams P, Chelmicki T, Clark RA, Yoneda T, Abboud HE (2007) NAD(P)H oxidases regulate HIF-2alpha protein expression. J Biol Chem 282:8019–8026

    Article  PubMed  CAS  Google Scholar 

  9. Boivin B, Zhang S, Arbiser JL, Zhang ZY, Tonks NK (2008) A modified cysteinyl-labeling assay reveals reversible oxidation of protein tyrosine phosphatases in angiomyolipoma cells. Proc Natl Acad Sci USA 105:9959–9964

    Article  PubMed  CAS  Google Scholar 

  10. Brar SS, Kennedy TP, Sturrock AB, Huecksteadt TP, Quinn MT, Whorton AR, Hoidal JR (2002) An NAD(P)H oxidase regulates growth and transcription in melanoma cells. Am J Physiol Cell Physiol 282:C1212–C1224

    PubMed  CAS  Google Scholar 

  11. Cassel SL, Eisenbarth SC, Iyer SS, Sadler JJ, Colegio OR, Tephly LA, Carter AB, Rothman PB, Flavell RA, Sutterwala FS (2008) The Nalp3 inflammasome is essential for the development of silicosis. Proc Natl Acad Sci USA 105:9035–9040

    Article  PubMed  CAS  Google Scholar 

  12. Cerimele F, Battle T, Lynch R, Frank DA, Murad E, Cohen C, Macaron N, Sixbey J, Smith K, Watnick RS, Eliopoulos A, Shehata B, Arbiser JL (2005) Reactive oxygen signaling and MAPK activation distinguish Epstein–Barr Virus (EBV)-positive versus EBV-negative Burkitt’s lymphoma. Proc Natl Acad Sci USA 102:175–179

    Article  PubMed  CAS  Google Scholar 

  13. Cerimele F, Brown LF, Bravo F, Ihler GM, Kouadio P, Arbiser JL (2003) Infectious angiogenesis: Bartonella bacilliformis infection results in endothelial production of angiopoietin-2 and epidermal production of vascular endothelial growth factor. Am J Pathol 163:1321–1327

    Article  PubMed  CAS  Google Scholar 

  14. Cohen C, Zavala-Pompa A, Sequeira JH, Shoji M, Sexton DG, Cotsonis G, Cerimele F, Govindarajan B, Macaron N, Arbiser JL (2002) Mitogen-activated protein kinase activation is an early event in melanoma progression. Clin Cancer Res 8:3728–3733

    PubMed  CAS  Google Scholar 

  15. Cowley S, Paterson H, Kemp P, Marshall CJ (1994) Activation of MAP kinase kinase is necessary and sufficient for PC12 differentiation and for transformation of NIH 3T3 cells. Cell 77:841–852

    Article  PubMed  CAS  Google Scholar 

  16. Curtin JA, Fridlyand J, Kageshita T, Patel HN, Busam KJ, Kutzner H, Cho KH, Aiba S, Brocker EB, LeBoit PE, Pinkel D, Bastian BC (2005) Distinct sets of genetic alterations in melanoma. N Engl J Med 353:2135–2147

    Article  PubMed  CAS  Google Scholar 

  17. Davies MA, Stemke-Hale K, Lin E, Tellez C, Deng W, Gopal YN, Woodman SE, Calderone TC, Ju Z, Lazar AJ, Prieto VG, Aldape K, Mills GB, Gershenwald JE (2009) Integrated molecular and clinical analysis of AKT activation in metastatic melanoma. Clin Cancer Res 15:7538–7546

    Article  PubMed  CAS  Google Scholar 

  18. De SC, De SP, Di MG, Venier A, Cerimele D, Serri F (1989) Reactive oxygen species production in circulating polymorphonuclear leukocytes in psoriasis. Acta Derm Venereol Suppl (Stockh) 146:50–52

    Google Scholar 

  19. Dudnakova T, Spraggon L, Slight J, Hastie N (2010) Actin: a novel interaction partner of WT1 influencing its cell dynamic properties. Oncogene 29:1085–1092

    Article  PubMed  CAS  Google Scholar 

  20. Fried L, Arbiser JL (2008) The reactive oxygen-driven tumor: relevance to melanoma. Pigment Cell Melanoma Res 21:117–122

    Article  PubMed  CAS  Google Scholar 

  21. Garrido-Urbani S, Jemelin S, Deffert C, Carnesecchi S, Basset O, Szyndralewiez C, Heitz F, Page P, Montet X, Michalik L, Arbiser J, Ruegg C, Krause KH, Imhof B (2011) Targeting vascular NADPH oxidase 1 blocks tumor angiogenesis through a PPARalpha mediated mechanism. PLoS ONE 6:e14665

    Article  PubMed  CAS  Google Scholar 

  22. Gordan JD, Lal P, Dondeti VR, Letrero R, Parekh KN, Oquendo CE, Greenberg RA, Flaherty KT, Rathmell WK, Keith B, Simon MC, Nathanson KL (2008) HIF-alpha effects on c-Myc distinguish two subtypes of sporadic VHL-deficient clear cell renal carcinoma. Cancer Cell 14:435–446

    Article  PubMed  CAS  Google Scholar 

  23. Govindarajan B, Bai X, Cohen C, Zhong H, Kilroy S, Louis G, Moses M, Arbiser JL (2003) Malignant transformation of melanocytes to melanoma by constitutive activation of mitogen-activated protein kinase kinase (MAPKK) signaling. J Biol Chem 278:9790–9795

    Article  PubMed  CAS  Google Scholar 

  24. Govindarajan B, Klafter R, Miller MS, Mansur C, Mizesko M, Bai X, LaMontagne K Jr, Arbiser JL (2002) Reactive oxygen-induced carcinogenesis causes hypermethylation of p16(Ink4a) and activation of MAP kinase. Mol Med 8:1–8

    Article  PubMed  CAS  Google Scholar 

  25. Govindarajan B, Shah A, Cohen C, Arnold RS, Schechner J, Chung J, Mercurio AM, Alani R, Ryu B, Fan CY, Cuezva JM, Martinez M, Arbiser JL (2005) Malignant transformation of human cells by constitutive expression of platelet-derived growth factor-BB. J Biol Chem 280:13936–13943

    Article  PubMed  CAS  Google Scholar 

  26. Govindarajan B, Sligh JE, Vincent BJ, Li M, Canter JA, Nickoloff BJ, Rodenburg RJ, Smeitink JA, Oberley L, Zhang Y, Slingerland J, Arnold RS, Lambeth JD, Cohen C, Hilenski L, Griendling K, Martinez-Diez M, Cuezva JM, Arbiser JL (2007) Overexpression of Akt converts radial growth melanoma to vertical growth melanoma. J Clin Invest 117:719–729

    Article  PubMed  CAS  Google Scholar 

  27. Hanselmann C, Mauch C, Werner S (2001) Haem oxygenase-1: a novel player in cutaneous wound repair and psoriasis? Biochem J 353:459–466

    Article  PubMed  CAS  Google Scholar 

  28. Klangby U, Okan I, Magnusson KP, Wendland M, Lind P, Wiman KG (1998) p16/INK4a and p15/INK4b gene methylation and absence of p16/INK4a mRNA and protein expression in Burkitt’s lymphoma. Blood 91:1680–1687

    PubMed  CAS  Google Scholar 

  29. Lambeth JD, Kawahara T, Diebold B (2007) Regulation of Nox and Duox enzymatic activity and expression. Free Radic Biol Med 43:319–331

    Article  PubMed  CAS  Google Scholar 

  30. LaMontagne KR Jr, Moses MA, Wiederschain D, Mahajan S, Holden J, Ghazizadeh H, Frank DA, Arbiser JL (2000) Inhibition of MAP kinase kinase causes morphological reversion and dissociation between soft agar growth and in vivo tumorigenesis in angiosarcoma cells. Am J Pathol 157:1937–1945

    Article  PubMed  CAS  Google Scholar 

  31. Lapidoth M, Ben-Amitai D, Bhandarkar S, Fried L, Arbiser JL (2009) Efficacy of topical application of eosin for ulcerated hemangiomas. J Am Acad Dermatol 60:350–351

    Article  PubMed  Google Scholar 

  32. Lawley LP, Cerimele F, Weiss SW, North P, Cohen C, Kozakewich HP, Mulliken JB, Arbiser JL (2005) Expression of Wilms tumor 1 gene distinguishes vascular malformations from proliferative endothelial lesions. Arch Dermatol 141:1297–1300

    Article  PubMed  Google Scholar 

  33. Leaute-Labreze C, de la Dumas RE, Hubiche T, Boralevi F, Thambo JB, Taieb A (2008) Propranolol for severe hemangiomas of infancy. N Engl J Med 358:2649–2651

    Article  PubMed  CAS  Google Scholar 

  34. Lee HM, Shin DM, Yuk JM, Shi G, Choi DK, Lee SH, Huang SM, Kim JM, Kim CD, Lee JH, Jo EK (2011) Autophagy negatively regulates keratinocyte inflammatory responses via scaffolding protein p62/SQSTM1. J Immunol 186:1248–1258

    Article  PubMed  CAS  Google Scholar 

  35. Levine SM (1992) The role of reactive oxygen species in the pathogenesis of multiple sclerosis. Med Hypotheses 39:271–274

    Article  PubMed  CAS  Google Scholar 

  36. Lunec J, Herbert K, Blount S, Griffiths HR, Emery P (1994) 8-Hydroxydeoxyguanosine. A marker of oxidative DNA damage in systemic lupus erythematosus. FEBS Lett 348:131–138

    Article  PubMed  CAS  Google Scholar 

  37. Maranchie JK, Zhan Y (2005) Nox4 is critical for hypoxia-inducible factor 2-alpha transcriptional activity in von Hippel-Lindau-deficient renal cell carcinoma. Cancer Res 65:9190–9193

    Article  PubMed  CAS  Google Scholar 

  38. Mishra MV, Bisht KS, Sun L, Muldoon-Jacobs K, Awwad R, Kaushal A, Nguyen P, Huang L, Pennington JD, Markovina S, Bradbury CM, Gius D (2008) DNMT1 as a molecular target in a multimodality-resistant phenotype in tumor cells. Mol Cancer Res 6:243–249

    Article  PubMed  CAS  Google Scholar 

  39. Mochizuki T, Furuta S, Mitsushita J, Shang WH, Ito M, Yokoo Y, Yamaura M, Ishizone S, Nakayama J, Konagai A, Hirose K, Kiyosawa K, Kamata T (2006) Inhibition of NADPH oxidase 4 activates apoptosis via the AKT/apoptosis signal-regulating kinase 1 pathway in pancreatic cancer PANC-1 cells. Oncogene 25:3699–3707

    Article  PubMed  CAS  Google Scholar 

  40. Orcutt KP, Parsons AD, Sibenaller ZA, Scarbrough PM, Zhu Y, Sobhakumari A, Wilke WW, Kalen AL, Goswami P, Miller FJ Jr, Spitz DR, Simons AL (2011) Erlotinib-mediated inhibition of EGFR signaling induces metabolic oxidative stress through NOX4. Cancer Res 71:3932–3940

    Article  PubMed  CAS  Google Scholar 

  41. Perry BN, Govindarajan B, Bhandarkar SS, Knaus UG, Valo M, Sturk C, Carrillo CO, Sohn A, Cerimele F, Dumont D, Losken A, Williams J, Brown LF, Tan X, Ioffe E, Yancopoulos GD, Arbiser JL (2006) Pharmacologic blockade of angiopoietin-2 is efficacious against model hemangiomas in mice. J Invest Dermatol 126:2316–2322

    Article  PubMed  CAS  Google Scholar 

  42. Perry DK, Hand WL, Edmondson DE, Lambeth JD (1992) Role of phospholipase D-derived diradylglycerol in the activation of the human neutrophil respiratory burst oxidase. Inhibition by phosphatidic acid phosphohydrolase inhibitors. J Immunol 149:2749–2758

    PubMed  CAS  Google Scholar 

  43. Qiu RG, Chen J, Kirn D, McCormick F, Symons M (1995) An essential role for Rac in Ras transformation. Nature 374:457–459

    Article  PubMed  CAS  Google Scholar 

  44. Sanz-Cameno P, Martin-Vilchez S, Lara-Pezzi E, Borque MJ, Salmeron J, de Munoz RP, Solis JA, Lopez-Cabrera M, Moreno-Otero R (2006) Hepatitis B virus promotes angiopoietin-2 expression in liver tissue: role of HBV X protein. Am J Pathol 169:1215–1222

    Article  PubMed  CAS  Google Scholar 

  45. Schreck R, Rieber P, Baeuerle PA (1991) Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-kappa B transcription factor and HIV-1. EMBO J 10:2247–2258

    PubMed  CAS  Google Scholar 

  46. Shinohara M, Shang WH, Kubodera M, Harada S, Mitsushita J, Kato M, Miyazaki H, Sumimoto H, Kamata T (2007) Nox1 redox signaling mediates oncogenic Ras-induced disruption of stress fibers and focal adhesions by down-regulating Rho. J Biol Chem 282:17640–17648

    Article  PubMed  CAS  Google Scholar 

  47. Stoff B, Mackelfresh J, Fried L, Cohen C, Arbiser JL (2010) A nonsteroidal alternative to impetiginized eczema in the emergency room. J Am Acad Dermatol 63:537–539

    Article  PubMed  Google Scholar 

  48. Szatrowski TP, Nathan CF (1991) Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res 51:794–798

    PubMed  CAS  Google Scholar 

  49. Takahashi K, Mulliken JB, Kozakewich HP, Rogers RA, Folkman J, Ezekowitz RA (1994) Cellular markers that distinguish the phases of hemangioma during infancy and childhood. J Clin Invest 93:2357–2364

    Article  PubMed  CAS  Google Scholar 

  50. Torisu-Itakura H, Lee JH, Huynh Y, Ye X, Essner R, Morton DL (2007) Monocyte-derived IL-10 expression predicts prognosis of stage IV melanoma patients. J Immunother 30:831–838

    Article  PubMed  CAS  Google Scholar 

  51. Trindade F, Tellechea O, Torrelo A, Requena L, Colmenero I (2011) Wilms tumor 1 expression in vascular neoplasms and vascular malformations. Am J Dermatopathol 33(6):569–572

    Article  PubMed  Google Scholar 

  52. Verma A, Ihler GM (2002) Activation of Rac, Cdc42 and other downstream signalling molecules by Bartonella bacilliformis during entry into human endothelial cells. Cell Microbiol 4:557–569

    Article  PubMed  CAS  Google Scholar 

  53. Vicent S, Chen R, Sayles LC, Lin C, Walker RG, Gillespie AK, Subramanian A, Hinkle G, Yang X, Saif S, Root DE, Huff V, Hahn WC, Sweet-Cordero EA (2010) Wilms tumor 1 (WT1) regulates KRAS-driven oncogenesis and senescence in mouse and human models. J Clin Invest 120:3940–3952

    Article  PubMed  CAS  Google Scholar 

  54. Warburg O (1956) On respiratory impairment in cancer cells. Science 124:269–270

    PubMed  CAS  Google Scholar 

  55. Weaver-Feldhaus J, Gruis NA, Neuhausen S, Le PD, Stockert E, Skolnick MH, Kamb A (1994) Localization of a putative tumor suppressor gene by using homozygous deletions in melanomas. Proc Natl Acad Sci USA 91:7563–7567

    Article  PubMed  CAS  Google Scholar 

  56. Yamaura M, Mitsushita J, Furuta S, Kiniwa Y, Ashida A, Goto Y, Shang WH, Kubodera M, Kato M, Takata M, Saida T, Kamata T (2009) NADPH oxidase 4 contributes to transformation phenotype of melanoma cells by regulating G2-M cell cycle progression. Cancer Res 69:2647–2654

    Article  PubMed  CAS  Google Scholar 

  57. Yamini B, Yu X, Dolan ME, Wu MH, Kufe DW, Weichselbaum RR (2007) Inhibition of nuclear factor-kappaB activity by temozolomide involves O6-methylguanine induced inhibition of p65 DNA binding. Cancer Res 67:6889–6898

    Article  PubMed  CAS  Google Scholar 

  58. Zietz C, Rossle M, Haas C, Sendelhofert A, Hirschmann A, Sturzl M, Lohrs U (1998) MDM-2 oncoprotein overexpression, p53 gene mutation, and VEGF up-regulation in angiosarcomas. Am J Pathol 153:1425–1433

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Supported by NIAMS Grants RO1AR 47901 and RO1 AR 050727 to J.L.A, and Emory Skin Disease Research Core Center P30 AR 42687

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jack L. Arbiser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonner, M.Y., Arbiser, J.L. Targeting NADPH oxidases for the treatment of cancer and inflammation. Cell. Mol. Life Sci. 69, 2435–2442 (2012). https://doi.org/10.1007/s00018-012-1017-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-012-1017-2

Keywords

Navigation