Skip to main content
Log in

Epigenetic regulation of hypoxia inducible factor in diseases and therapeutics

  • Review
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Hypoxia-inducible factors (HIFs) are master regulators of angiogenesis and cellular adaptation in hypoxic microenvironments. Accumulating evidence indicates that HIFs also regulate cell survival, glucose metabolism, microenvironmental remodeling, cancer metastasis, and tumor progression, and thus, HIFs are viewed as therapeutic targets in many diseases. Epigenetic changes are involved in the switching ‘on’ and ‘off’ of many genes, and it has been suggested that the DNA hypermethylation of specific gene promoters, histone modifications (acetylation, phosphorylation, and methylation) and small interfering or micro RNAs be regarded epigenetic gene targets for the regulation of disease-associated cellular changes. Furthermore, the hypoxic microenvironment is one of the most important cellular stress stimuli in terms of the regulation of cellular epigenetic status via histone modification. Therefore, drug development and therapeutic approaches to ischemic diseases or cancer for targeting HIFs by modulation of epigenetic status become an attractive area. Here, the authors provide a review of the literature regarding the targeting of HIF, a key modulator of hypoxic-cell response under various disease conditions, by modulating histone or DNA using endogenous small RNAs or exogenous chemicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

5-aza-dC:

5-Aza-deoxycitidine

ARD1:

Arrest-defective-1

CBP:

CREB binding protein

CpG:

Cytosine-preceding-guanosine

DNMT:

DNA methyltransferases

FIH:

Factor inhibiting HIF-1

HDAC:

Histone deacetylases

HIF:

Hypoxia-inducible factor

HRE:

Hypoxia response element

MAPK:

Mitogen-activated protein kinase

MBD:

Methyl-CpG-binding domain proteins

miRNA:

Micro-RNA

mTOR:

Mammalian target of rapamycin

mtROS:

Mitochondrial reactive oxygen species

ncRNA:

Non-coding RNA

ODDD:

Oxygen dependent degradation domain

PHD:

Prolyl hydroxylase domain protein

pVHL:

von Hippel-Lindau protein

RCC:

Renal cell carcinoma

RISC:

RNA-induced silencing complex

RNAi:

RNA interference

siRNA:

Small interfering RNA

TSA:

Trichostatin A

VEGF:

Vascular endothelial growth factor

GLUT:

Glucose transporter

References

  • Alleman, W.G., R.L. Tabios, G.V. Chandramouli, O.N. Aprelikova, C. Torres-Cabala, A. Mendoza, C. Rogers, N.A. Sopko, W.M. Linehan, and J.R. Vasselli. 2004. The in vitro and in vivo effects of re-expressing methylated von Hippel-Lindau tumor suppressor gene in clear cell renal carcinoma with 5-aza-2′-deoxycytidine. Clinical Cancer Research 10: 7011–7021.

    Article  PubMed  CAS  Google Scholar 

  • Antequera, F., and A. Bird. 1993. Number of CpG islands and genes in human and mouse. Proceedings of the National Academy of Sciences of the United States of America 90: 11995–11999.

    Article  PubMed  CAS  Google Scholar 

  • Bacon, A.L., S. Fox, H. Turley, and A.L. Harris. 2007. Selective silencing of the hypoxia-inducible factor 1 target gene BNIP3 by histone deacetylation and methylation in colorectal cancer. Oncogene 26: 132–141.

    Article  PubMed  CAS  Google Scholar 

  • Benetatos, L., A. Dasoula, N. Syed, E. Hatzimichael, T. Crook, and K.L. Bourantas. 2008. Methylation analysis of the von Hippel-Lindau gene in acute myeloid leukaemia and myelodysplastic syndromes. Leukemia 22: 1293–1295.

    Article  PubMed  CAS  Google Scholar 

  • Berger, S.L. 2007. The complex language of chromatin regulation during transcription. Nature 447: 407–412.

    Article  PubMed  CAS  Google Scholar 

  • Bernstein, E., A.A. Caudy, S.M. Hammond, and G.J. Hannon. 2001. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409: 363–366.

    Article  PubMed  CAS  Google Scholar 

  • Berra, E., E. Benizri, A. Ginouves, V. Volmat, D. Roux, and J. Pouyssegur. 2003. HIF prolyl-hydroxylase 2 is the key oxygen sensor setting low steady-state levels of HIF-1alpha in normoxia. EMBO Journal 22: 4082–4090.

    Article  PubMed  CAS  Google Scholar 

  • Bird, A.P. 1986. CpG-rich islands and the function of DNA methylation. Nature 321: 209–213.

    Article  PubMed  CAS  Google Scholar 

  • Birner, P., M. Schindl, A. Obermair, G. Breitenecker, and G. Oberhuber. 2001. Expression of hypoxia-inducible factor 1alpha in epithelial ovarian tumors: its impact on prognosis and on response to chemotherapy. Clinical Cancer Research 7: 1661–1668.

    PubMed  CAS  Google Scholar 

  • Birner, P., M. Schindl, A. Obermair, C. Plank, G. Breitenecker, and G. Oberhuber. 2000. Overexpression of hypoxia-inducible factor 1alpha is a marker for an unfavorable prognosis in early-stage invasive cervical cancer. Cancer Research 60: 4693–4696.

    PubMed  CAS  Google Scholar 

  • Bogdanovic, O., and G.J. Veenstra. 2009. DNA methylation and methyl-CpG binding proteins: developmental requirements and function. Chromosoma 118: 549–565.

    Article  PubMed  CAS  Google Scholar 

  • Brugarolas, J.B., F. Vazquez, A. Reddy, W.R. Sellers, and W.G. Kaelin Jr. 2003. TSC2 regulates VEGF through mTOR-dependent and -independent pathways. Cancer Cell 4: 147–158.

    Article  PubMed  CAS  Google Scholar 

  • Bruick, R.K. 2000. Expression of the gene encoding the proapoptotic Nip3 protein is induced by hypoxia. Proceedings of the National Academy of Sciences of the United States of America 97: 9082–9087.

    Article  PubMed  CAS  Google Scholar 

  • Carrero, P., K. Okamoto, P. Coumailleau, S. O’brien, H. Tanaka, and L. Poellinger. 2000. Redox-regulated recruitment of the transcriptional coactivators CREB-binding protein and SRC-1 to hypoxia-inducible factor 1alpha. Molecular and Cellular Biology 20: 402–415.

    Article  PubMed  CAS  Google Scholar 

  • Chandel, N.S., E. Maltepe, E. Goldwasser, C.E. Mathieu, M.C. Simon, and P.T. Schumacker. 1998. Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proceedings of the National Academy of Sciences of the United States of America 95: 11715–11720.

    Article  PubMed  CAS  Google Scholar 

  • Chen, C., J. Wang, R. Liu, and S. Qian. 2012. RNA interference of hypoxia-inducible factor-1 alpha improves the effects of transcatheter arterial embolization in rat liver tumors. Tumour Biology 33: 1095–1103.

    Article  PubMed  CAS  Google Scholar 

  • Chim, C.S., R. Liang, and Y.L. Kwong. 2002. Hypermethylation of gene promoters in hematological neoplasia. Hematological Oncology 20: 167–176.

    Article  PubMed  CAS  Google Scholar 

  • Choudhary, C., C. Kumar, F. Gnad, M.L. Nielsen, M. Rehman, T.C. Walther, J.V. Olsen, and M. Mann. 2009. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325: 834–840.

    Article  PubMed  CAS  Google Scholar 

  • Clifford, S.C., A.H. Prowse, N.A. Affara, C.H. Buys, and E.R. Maher. 1998. Inactivation of the von Hippel-Lindau (VHL) tumour suppressor gene and allelic losses at chromosome arm 3p in primary renal cell carcinoma: evidence for a VHL-independent pathway in clear cell renal tumourigenesis. Genes, Chromosomes & Cancer 22: 200–209.

    Article  CAS  Google Scholar 

  • Clouaire, T., and I. Stancheva. 2008. Methyl-CpG binding proteins: specialized transcriptional repressors or structural components of chromatin? Cellular and Molecular Life Sciences 65: 1509–1522.

    Article  PubMed  CAS  Google Scholar 

  • De Angelis, P.M., B. Fjell, K.L. Kravik, T. Haug, S.H. Tunheim, W. Reichelt, M. Beigi, O.P. Clausen, E. Galteland, and T. Stokke. 2004. Molecular characterizations of derivatives of HCT116 colorectal cancer cells that are resistant to the chemotherapeutic agent 5-fluorouracil. International Journal of Oncology 24: 1279–1288.

    PubMed  Google Scholar 

  • Dmitriev, A.A., V.I. Kashuba, K. Haraldson, V.N. Senchenko, T.V. Pavlova, A.V. Kudryavtseva, E.A. Anedchenko, G.S. Krasnov, I.V. Pronina, V.I. Loginov, T.T. Kondratieva, T.P. Kazubskaya, E.A. Braga, S.P. Yenamandra, I. Ignatjev, I. Ernberg, G. Klein, M.I. Lerman, and E.R. Zabarovsky. 2012. Genetic and epigenetic analysis of non-small cell lung cancer with NotI-microarrays. Epigenetics 7: 502–513.

    Article  PubMed  CAS  Google Scholar 

  • Encode-Project-Consortium The ENCODE (ENCyclopedia Of DNA Elements) Project. 2004. Science 306: 636–640.

  • Epstein, A.C., J.M. Gleadle, L.A. Mcneill, K.S. Hewitson, J. O’rourke, D.R. Mole, M. Mukherji, E. Metzen, M.I. Wilson, A. Dhanda, Y.M. Tian, N. Masson, D.L. Hamilton, P. Jaakkola, R. Barstead, J. Hodgkin, P.H. Maxwell, C.W. Pugh, C.J. Schofield, and P.J. Ratcliffe. 2001. C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 107: 43–54.

    Article  PubMed  CAS  Google Scholar 

  • Erkan, M., J. Kleeff, I. Esposito, T. Giese, K. Ketterer, M.W. Buchler, N.A. Giese, and H. Friess. 2005. Loss of BNIP3 expression is a late event in pancreatic cancer contributing to chemoresistance and worsened prognosis. Oncogene 24: 4421–4432.

    Article  PubMed  CAS  Google Scholar 

  • Fath, D.M., X. Kong, D. Liang, Z. Lin, A. Chou, Y. Jiang, J. Fang, J. Caro, and N. Sang. 2006. Histone deacetylase inhibitors repress the transactivation potential of hypoxia-inducible factors independently of direct acetylation of HIF-alpha. Journal of Biological Chemistry 281: 13612–13619.

    Article  PubMed  CAS  Google Scholar 

  • Forstemann, K., Y. Tomari, T. Du, V.V. Vagin, A.M. Denli, D.P. Bratu, C. Klattenhoff, W.E. Theurkauf, and P.D. Zamore. 2005. Normal microRNA maturation and germ-line stem cell maintenance requires Loquacious, a double-stranded RNA-binding domain protein. PLoS Biology 3: e236.

    Article  PubMed  CAS  Google Scholar 

  • Forsythe, J.A., B.H. Jiang, N.V. Iyer, F. Agani, S.W. Leung, R.D. Koos, and G.L. Semenza. 1996. Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Molecular and Cellular Biology 16: 4604–4613.

    PubMed  CAS  Google Scholar 

  • Gao, L., M.A. Cueto, F. Asselbergs, and P. Atadja. 2002. Cloning and functional characterization of HDAC11, a novel member of the human histone deacetylase family. Journal of Biological Chemistry 277: 25748–25755.

    Article  PubMed  CAS  Google Scholar 

  • Gardiner-Garden, M., and M. Frommer. 1987. CpG islands in vertebrate genomes. Journal of Molecular Biology 196: 261–282.

    Article  PubMed  CAS  Google Scholar 

  • Ghosh, A.K., T.D. Shanafelt, A. Cimmino, C. Taccioli, S. Volinia, C.G. Liu, G.A. Calin, C.M. Croce, D.A. Chan, A.J. Giaccia, C. Secreto, L.E. Wellik, Y.K. Lee, D. Mukhopadhyay, and N.E. Kay. 2009. Aberrant regulation of pVHL levels by microRNA promotes the HIF/VEGF axis in CLL B cells. Blood 113: 5568–5574.

    Article  PubMed  CAS  Google Scholar 

  • Gibney, E.R., and C.M. Nolan. 2010. Epigenetics and gene expression. Heredity (Edinb) 105: 4–13.

    Article  CAS  Google Scholar 

  • Gnarra, J.R., G.M. Glenn, F. Latif, P. Anglard, M.I. Lerman, B. Zbar, and W.M. Linehan. 1993. Molecular genetic studies of sporadic and familial renal cell carcinoma. Urologic Clinics of North America 20: 207–216.

    PubMed  CAS  Google Scholar 

  • Goll, M.G., F. Kirpekar, K.A. Maggert, J.A. Yoder, C.L. Hsieh, X. Zhang, K.G. Golic, S.E. Jacobsen, and T.H. Bestor. 2006. Methylation of tRNAAsp by the DNA methyltransferase homolog Dnmt2. Science 311: 395–398.

    Article  PubMed  CAS  Google Scholar 

  • Gregoretti, I.V., Y.M. Lee, and H.V. Goodson. 2004. Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis. Journal of Molecular Biology 338: 17–31.

    Article  PubMed  CAS  Google Scholar 

  • Gregory, R.I., K.P. Yan, G. Amuthan, T. Chendrimada, B. Doratotaj, N. Cooch, and R. Shiekhattar. 2004. The Microprocessor complex mediates the genesis of microRNAs. Nature 432: 235–240.

    Article  PubMed  CAS  Google Scholar 

  • Grewal, S.I. 2010. RNAi-dependent formation of heterochromatin and its diverse functions. Current Opinion in Genetics & Development 20: 134–141.

    Article  CAS  Google Scholar 

  • Grewal, S.I., and D. Moazed. 2003. Heterochromatin and epigenetic control of gene expression. Science 301: 798–802.

    Article  PubMed  CAS  Google Scholar 

  • Gu, Y.Z., S.M. Moran, J.B. Hogenesch, L. Wartman, and C.A. Bradfield. 1998. Molecular characterization and chromosomal localization of a third alpha-class hypoxia inducible factor subunit, HIF3alpha. Gene Expression 7: 205–213.

    PubMed  CAS  Google Scholar 

  • Guo, H., N.T. Ingolia, J.S. Weissman, and D.P. Bartel. 2010. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466: 835–840.

    Article  PubMed  CAS  Google Scholar 

  • Guo, L., L. Li, W. Wang, Z. Pan, Q. Zhou, and Z. Wu. 2012. Mitochondrial reactive oxygen species mediates nicotine-induced hypoxia-inducible factor-1alpha expression in human non-small cell lung cancer cells. Biochimica et Biophysica Acta 1822: 852–861.

    Article  PubMed  CAS  Google Scholar 

  • Guzy, R.D., B. Hoyos, E. Robin, H. Chen, L. Liu, K.D. Mansfield, M.C. Simon, U. Hammerling, and P.T. Schumacker. 2005. Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. Cell Metabolism 1: 401–408.

    Article  PubMed  CAS  Google Scholar 

  • Hamilton, A.J., and D.C. Baulcombe. 1999. A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286: 950–952.

    Article  PubMed  CAS  Google Scholar 

  • Hatzimichael, E., A. Dasoula, R. Shah, N. Syed, A. Papoudou-Bai, H.M. Coley, G. Dranitsaris, K.L. Bourantas, J. Stebbing, and T. Crook. 2010. The prolyl-hydroxylase EGLN3 and not EGLN1 is inactivated by methylation in plasma cell neoplasia. European Journal of Haematology 84: 47–51.

    Article  PubMed  CAS  Google Scholar 

  • Hatzimichael, E., G. Dranitsaris, A. Dasoula, L. Benetatos, J. Stebbing, T. Crook, and K.L. Von Bourantas. 2009. Hippel-Lindau methylation status in patients with multiple myeloma: a potential predictive factor for the development of bone disease. Clinical Lymphoma Myeloma 9: 239–242.

    Article  PubMed  CAS  Google Scholar 

  • Heller, G., W.M. Schmidt, B. Ziegler, S. Holzer, L. Mullauer, M. Bilban, C.C. Zielinski, J. Drach, and S. Zochbauer-Muller. 2008. Genome-wide transcriptional response to 5-aza-2′-deoxycytidine and trichostatin a in multiple myeloma cells. Cancer Research 68: 44–54.

    Article  PubMed  CAS  Google Scholar 

  • Herman, J.G., F. Latif, Y. Weng, M.I. Lerman, B. Zbar, S. Liu, D. Samid, D.S. Duan, J.R. Gnarra, W.M. Linehan, et al. 1994. Silencing of the VHL tumor-suppressor gene by DNA methylation in renal carcinoma. Proceedings of the National Academy of Sciences of the United States of America 91: 9700–9704.

    Article  PubMed  CAS  Google Scholar 

  • Ho, J.J., J.L. Metcalf, M.S. Yan, P.J. Turgeon, J.J. Wang, M. Chalsev, T.N. Petruzziello-Pellegrini, A.K. Tsui, J.Z. He, H. Dhamko, H.S. Man, G.B. Robb, B.T. Teh, M. Ohh, and P.A. Marsden. 2012. Functional importance of dicer protein in the adaptive cellular response to hypoxia. Journal of Biological Chemistry 287: 29003–29020.

    Article  PubMed  CAS  Google Scholar 

  • Horiuchi, A., T. Hayashi, N. Kikuchi, A. Hayashi, C. Fuseya, T. Shiozawa, and I. Konishi. 2012. Hypoxia upregulates ovarian cancer invasiveness via the binding of HIF-1alpha to a hypoxia-induced, methylation-free hypoxia response element of S100A4 gene. International Journal of Cancer 131: 1755–1767.

    Article  CAS  Google Scholar 

  • Huang, J., Q. Zhao, S.M. Mooney, and F.S. Lee. 2002. Sequence determinants in hypoxia-inducible factor-1alpha for hydroxylation by the prolyl hydroxylases PHD1, PHD2, and PHD3. Journal of Biological Chemistry 277: 39792–39800.

    Article  PubMed  CAS  Google Scholar 

  • Hudson, C.C., M. Liu, G.G. Chiang, D.M. Otterness, D.C. Loomis, F. Kaper, A.J. Giaccia, and R.T. Abraham. 2002. Regulation of hypoxia-inducible factor 1alpha expression and function by the mammalian target of rapamycin. Molecular and Cellular Biology 22: 7004–7014.

    Article  PubMed  CAS  Google Scholar 

  • Hur, E., K.Y. Chang, E. Lee, S.K. Lee, and H. Park. 2001. Mitogen-activated protein kinase kinase inhibitor PD98059 blocks the trans-activation but not the stabilization or DNA binding ability of hypoxia-inducible factor-1alpha. Molecular Pharmacology 59: 1216–1224.

    PubMed  CAS  Google Scholar 

  • Iliopoulos, O., A.P. Levy, C. Jiang, W.G. Kaelin Jr, and M.A. Goldberg. 1996. Negative regulation of hypoxia-inducible genes by the von Hippel-Lindau protein. Proceedings of the National Academy of Sciences of the United States of America 93: 10595–10599.

    Article  PubMed  CAS  Google Scholar 

  • Ishida, M., M. Sunamura, T. Furukawa, M. Akada, H. Fujimura, E. Shibuya, S. Egawa, M. Unno, and A. Horii. 2007. Elucidation of the relationship of BNIP3 expression to gemcitabine chemosensitivity and prognosis. World Journal of Gastroenterology 13: 4593–4597.

    PubMed  CAS  Google Scholar 

  • Ishiguro, M., S. Iida, H. Uetake, S. Morita, H. Makino, K. Kato, Y. Takagi, M. Enomoto, and K. Sugihara. 2007. Effect of combined therapy with low-dose 5-aza-2′-deoxycytidine and irinotecan on colon cancer cell line HCT-15. Annals of Surgical Oncology 14: 1752–1762.

    Article  PubMed  Google Scholar 

  • Ivan, M., K. Kondo, H. Yang, W. Kim, J. Valiando, M. Ohh, A. Salic, J.M. Asara, W.S. Lane, and W.G. Kaelin Jr. 2001. HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292: 464–468.

    Article  PubMed  CAS  Google Scholar 

  • Jaakkola, P., D.R. Mole, Y.M. Tian, M.I. Wilson, J. Gielbert, S.J. Gaskell, A. Kriegsheim, H.F. Hebestreit, M. Mukherji, C.J. Schofield, P.H. Maxwell, C.W. Pugh, and P.J. Ratcliffe. 2001. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292: 468–472.

    Article  PubMed  CAS  Google Scholar 

  • Jeong, J.W., M.K. Bae, M.Y. Ahn, S.H. Kim, T.K. Sohn, M.H. Bae, M.A. Yoo, E.J. Song, K.J. Lee, and K.W. Kim. 2002. Regulation and destabilization of HIF-1alpha by ARD1-mediated acetylation. Cell 111: 709–720.

    Article  PubMed  CAS  Google Scholar 

  • Jiang, B.H., G. Jiang, J.Z. Zheng, Z. Lu, T. Hunter, and P.K. Vogt. 2001. Phosphatidylinositol 3-kinase signaling controls levels of hypoxia-inducible factor 1. Cell Growth & Differentiation 12: 363–369.

    CAS  Google Scholar 

  • Jurkowski, T.P., M. Meusburger, S. Phalke, M. Helm, W. Nellen, G. Reuter, and A. Jeltsch. 2008. Human DNMT2 methylates tRNA(Asp) molecules using a DNA methyltransferase-like catalytic mechanism. RNA 14: 1663–1670.

    Article  PubMed  CAS  Google Scholar 

  • Kallio, P.J., I. Pongratz, K. Gradin, J. Mcguire, and L. Poellinger. 1997. Activation of hypoxia-inducible factor 1alpha: posttranscriptional regulation and conformational change by recruitment of the Arnt transcription factor. Proceedings of the National Academy of Sciences of the United States of America 94: 5667–5672.

    Article  PubMed  CAS  Google Scholar 

  • Kang, S.G., W.H. Lee, Y.H. Lee, Y.S. Lee, and S.G. Kim. 2012. Hypoxia-inducible factor-1alpha inhibition by a pyrrolopyrazine metabolite of oltipraz as a consequence of microRNAs 199a–5p and 20a induction. Carcinogenesis 33: 661–669.

    Article  PubMed  CAS  Google Scholar 

  • Kato, H., S. Tamamizu-Kato, and F. Shibasaki. 2004. Histone deacetylase 7 associates with hypoxia-inducible factor 1alpha and increases transcriptional activity. Journal of Biological Chemistry 279: 41966–41974.

    Article  PubMed  CAS  Google Scholar 

  • Ke, Q., and M. Costa. 2006. Hypoxia-inducible factor-1 (HIF-1). Molecular Pharmacology 70: 1469–1480.

    Article  PubMed  CAS  Google Scholar 

  • Kenneth, N.S., S. Mudie, P. Van Uden, and S. Rocha. 2009. SWI/SNF regulates the cellular response to hypoxia. Journal of Biological Chemistry 284: 4123–4131.

    Article  PubMed  CAS  Google Scholar 

  • Kim, M.S., H.J. Kwon, Y.M. Lee, J.H. Baek, J.E. Jang, S.W. Lee, E.J. Moon, H.S. Kim, S.K. Lee, H.Y. Chung, C.W. Kim, and K.W. Kim. 2001. Histone deacetylases induce angiogenesis by negative regulation of tumor suppressor genes. Nature Medicine 7: 437–443.

    Article  PubMed  Google Scholar 

  • Koslowski, M., U. Luxemburger, O. Tureci, and U. Sahin. 2011. Tumor-associated CpG demethylation augments hypoxia-induced effects by positive autoregulation of HIF-1alpha. Oncogene 30: 876–882.

    Article  PubMed  CAS  Google Scholar 

  • Kothari, S., J. Cizeau, E. Mcmillan-Ward, S.J. Israels, M. Bailes, K. Ens, L.A. Kirshenbaum, and S.B. Gibson. 2003. BNIP3 plays a role in hypoxic cell death in human epithelial cells that is inhibited by growth factors EGF and IGF. Oncogene 22: 4734–4744.

    Article  PubMed  CAS  Google Scholar 

  • Kouzarides, T. 2007. Chromatin modifications and their function. Cell 128: 693–705.

    Article  PubMed  CAS  Google Scholar 

  • Kuroki, T., F. Trapasso, S. Yendamuri, A. Matsuyama, H. Alder, M. Mori, and C.M. Croce. 2003. Allele loss and promoter hypermethylation of VHL, RAR-beta, RASSF1A, and FHIT tumor suppressor genes on chromosome 3p in esophageal squamous cell carcinoma. Cancer Research 63: 3724–3728.

    PubMed  CAS  Google Scholar 

  • Lando, D., D.J. Peet, J.J. Gorman, D.A. Whelan, M.L. Whitelaw, and R.K. Bruick. 2002. FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor. Genes & Development 16: 1466–1471.

    Article  CAS  Google Scholar 

  • Lando, D., I. Pongratz, L. Poellinger, and M.L. Whitelaw. 2000. A redox mechanism controls differential DNA binding activities of hypoxia-inducible factor (HIF) 1alpha and the HIF-like factor. Journal of Biological Chemistry 275: 4618–4627.

    Article  PubMed  CAS  Google Scholar 

  • Latif, F., K. Tory, J. Gnarra, M. Yao, F.M. Duh, M.L. Orcutt, T. Stackhouse, I. Kuzmin, W. Modi, L. Geil, et al. 1993. Identification of the von Hippel-Lindau disease tumor suppressor gene. Science 260: 1317–1320.

    Article  PubMed  CAS  Google Scholar 

  • Law, A.Y., K.P. Lai, C.K. Ip, A.S. Wong, G.F. Wagner, and C.K. Wong. 2008. Epigenetic and HIF-1 regulation of stanniocalcin-2 expression in human cancer cells. Experimental Cell Research 314: 1823–1830.

    Article  PubMed  CAS  Google Scholar 

  • Law, A.Y., and C.K. Wong. 2010a. Stanniocalcin-2 is a HIF-1 target gene that promotes cell proliferation in hypoxia. Experimental Cell Research 316: 466–476.

    Article  PubMed  CAS  Google Scholar 

  • Law, A.Y., and C.K. Wong. 2010b. Stanniocalcin-2 promotes epithelial-mesenchymal transition and invasiveness in hypoxic human ovarian cancer cells. Experimental Cell Research 316: 3425–3434.

    Article  PubMed  CAS  Google Scholar 

  • Lee, Y., C. Ahn, J. Han, H. Choi, J. Kim, J. Yim, J. Lee, P. Provost, O. Radmark, S. Kim, and V.N. Kim. 2003. The nuclear RNase III Drosha initiates microRNA processing. Nature 425: 415–419.

    Article  PubMed  CAS  Google Scholar 

  • Lei, Z., B. Li, Z. Yang, H. Fang, G.M. Zhang, Z.H. Feng, and B. Huang. 2009. Regulation of HIF-1alpha and VEGF by miR-20b tunes tumor cells to adapt to the alteration of oxygen concentration. PLoS One 4: e7629.

    Article  PubMed  CAS  Google Scholar 

  • Li, E., C. Beard, and R. Jaenisch. 1993. Role for DNA methylation in genomic imprinting. Nature 366: 362–365.

    Article  PubMed  CAS  Google Scholar 

  • Li, L., X. Lin, M. Staver, A. Shoemaker, D. Semizarov, S.W. Fesik, and Y. Shen. 2005. Evaluating hypoxia-inducible factor-1alpha as a cancer therapeutic target via inducible RNA interference in vivo. Cancer Research 65: 7249–7258.

    Article  PubMed  CAS  Google Scholar 

  • Lichner, Z., S. Mejia-Guerrero, M. Ignacak, A. Krizova, T.T. Bao, A.H. Girgis, Y.M. Youssef, and G.M. Yousef. 2012. Pleiotropic action of renal cell carcinoma-dysregulated miRNAs on hypoxia-related signaling pathways. American Journal of Pathology 180: 1675–1687.

    Article  PubMed  CAS  Google Scholar 

  • Lippman, Z., and R. Martienssen. 2004. The role of RNA interference in heterochromatic silencing. Nature 431: 364–370.

    Article  PubMed  CAS  Google Scholar 

  • Liu, C.J., M.M. Tsai, P.S. Hung, S.Y. Kao, T.Y. Liu, K.J. Wu, S.H. Chiou, S.C. Lin, and K.W. Chang. 2010. miR-31 ablates expression of the HIF regulatory factor FIH to activate the HIF pathway in head and neck carcinoma. Cancer Research 70: 1635–1644.

    Article  PubMed  CAS  Google Scholar 

  • Livide, G., M.C. Epistolato, M. Amenduni, V. Disciglio, A. Marozza, M.A. Mencarelli, P. Toti, S. Lazzi, T. Hadjistilianou, S. De Francesco, A. D’ambrosio, A. Renieri, and F. Ariani. 2012. Epigenetic and copy number variation analysis in retinoblastoma by MS-MLPA. Pathology & Oncology Research 18: 703–712.

    Article  CAS  Google Scholar 

  • Mahon, P.C., K. Hirota, and G.L. Semenza. 2001. FIH-1: a novel protein that interacts with HIF-1alpha and VHL to mediate repression of HIF-1 transcriptional activity. Genes & Development 15: 2675–2686.

    Article  CAS  Google Scholar 

  • Majumder, P.K., P.G. Febbo, R. Bikoff, R. Berger, Q. Xue, L.M. Mcmahon, J. Manola, J. Brugarolas, T.J. Mcdonnell, T.R. Golub, M. Loda, H.A. Lane, and W.R. Sellers. 2004. mTOR inhibition reverses Akt-dependent prostate intraepithelial neoplasia through regulation of apoptotic and HIF-1-dependent pathways. Nature Medicine 10: 594–601.

    Article  PubMed  CAS  Google Scholar 

  • Makino, Y., R. Cao, K. Svensson, G. Bertilsson, M. Asman, H. Tanaka, Y. Cao, A. Berkenstam, and L. Poellinger. 2001. Inhibitory PAS domain protein is a negative regulator of hypoxia-inducible gene expression. Nature 414: 550–554.

    Article  PubMed  CAS  Google Scholar 

  • Maltepe, E., G.W. Krampitz, K.M. Okazaki, K. Red-Horse, W. Mak, M.C. Simon, and S.J. Fisher. 2005. Hypoxia-inducible factor-dependent histone deacetylase activity determines stem cell fate in the placenta. Development 132: 3393–3403.

    Article  PubMed  CAS  Google Scholar 

  • Manalo, D.J., A. Rowan, T. Lavoie, L. Natarajan, B.D. Kelly, S.Q. Ye, J.G. Garcia, and G.L. Semenza. 2005. Transcriptional regulation of vascular endothelial cell responses to hypoxia by HIF-1. Blood 105: 659–669.

    Article  PubMed  CAS  Google Scholar 

  • Mansfield, K.D., R.D. Guzy, Y. Pan, R.M. Young, T.P. Cash, P.T. Schumacker, and M.C. Simon. 2005. Mitochondrial dysfunction resulting from loss of cytochrome c impairs cellular oxygen sensing and hypoxic HIF-alpha activation. Cell Metabolism 1: 393–399.

    Article  PubMed  CAS  Google Scholar 

  • Mazure, N.M., E.Y. Chen, K.R. Laderoute, and A.J. Giaccia. 1997. Induction of vascular endothelial growth factor by hypoxia is modulated by a phosphatidylinositol 3-kinase/Akt signaling pathway in Ha-ras-transformed cells through a hypoxia inducible factor-1 transcriptional element. Blood 90: 3322–3331.

    PubMed  CAS  Google Scholar 

  • Meng, S., J. Cao, L. Wang, Q. Zhou, Y. Li, C. Shen, X. Zhang, and C. Wang. 2012. MicroRNA 107 Partly Inhibits Endothelial Progenitor Cells Differentiation via HIF-1beta. PLoS One 7: e40323.

    Article  PubMed  CAS  Google Scholar 

  • Metzen, E., J. Zhou, W. Jelkmann, J. Fandrey, and B. Brune. 2003. Nitric oxide impairs normoxic degradation of HIF-1alpha by inhibition of prolyl hydroxylases. Molecular Biology of the Cell 14: 3470–3481.

    Article  PubMed  CAS  Google Scholar 

  • Michishita, E., J.Y. Park, J.M. Burneskis, J.C. Barrett, and I. Horikawa. 2005. Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Molecular Biology of the Cell 16: 4623–4635.

    Article  PubMed  CAS  Google Scholar 

  • Mie Lee, Y., S.H. Kim, H.S. Kim, M. Jin Son, H. Nakajima, H. Jeong Kwon, and K.W. Kim. 2003. Inhibition of hypoxia-induced angiogenesis by FK228, a specific histone deacetylase inhibitor, via suppression of HIF-1alpha activity. Biochem Biophys Res Commun 300: 241–246.

    Article  PubMed  Google Scholar 

  • Min, L., Q. Chen, S. He, S. Liu, and Y. Ma. 2012. Hypoxia-induced increases in A549/CDDP cell drug resistance are reversed by RNA interference of HIF-1alpha expression. Molecular Medicine Report 5: 228–232.

    CAS  Google Scholar 

  • Miranda, T.B., and P.A. Jones. 2007. DNA methylation: the nuts and bolts of repression. Journal of Cellular Physiology 213: 384–390.

    Article  PubMed  CAS  Google Scholar 

  • Mizuno, T., M. Nagao, Y. Yamada, M. Narikiyo, M. Ueno, M. Miyagishi, K. Taira, and Y. Nakajima. 2006. Small interfering RNA expression vector targeting hypoxia-inducible factor 1 alpha inhibits tumor growth in hepatobiliary and pancreatic cancers. Cancer Gene Therapy 13: 131–140.

    Article  PubMed  CAS  Google Scholar 

  • Murai, M., M. Toyota, H. Suzuki, A. Satoh, Y. Sasaki, K. Akino, M. Ueno, F. Takahashi, M. Kusano, H. Mita, K. Yanagihara, T. Endo, Y. Hinoda, T. Tokino, and K. Imai. 2005. Aberrant methylation and silencing of the BNIP3 gene in colorectal and gastric cancer. Clinical Cancer Research 11: 1021–1027.

    PubMed  CAS  Google Scholar 

  • Newell-Price, J., A.J. Clark, and P. King. 2000. DNA methylation and silencing of gene expression. Trends in Endocrinology & Metabolism 11: 142–148.

    Article  CAS  Google Scholar 

  • Okami, J., D.M. Simeone, and C.D. Logsdon. 2004. Silencing of the hypoxia-inducible cell death protein BNIP3 in pancreatic cancer. Cancer Research 64: 5338–5346.

    Article  PubMed  CAS  Google Scholar 

  • Okano, M., D.W. Bell, D.A. Haber, and E. Li. 1999. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99: 247–257.

    Article  PubMed  CAS  Google Scholar 

  • Pinto, A., and V. Zagonel. 1993. 5-Aza-2′-deoxycytidine (Decitabine) and 5-azacytidine in the treatment of acute myeloid leukemias and myelodysplastic syndromes: past, present and future trends. Leukemia 7(Suppl 1): 51–60.

    PubMed  Google Scholar 

  • Place, T.L., M.P. Fitzgerald, S. Venkataraman, S.U. Vorrink, A.J. Case, M.L. Teoh, and F.E. Domann. 2011. Aberrant promoter CpG methylation is a mechanism for impaired PHD3 expression in a diverse set of malignant cells. PLoS One 6: e14617.

    Article  PubMed  CAS  Google Scholar 

  • Ponting, C.P., P.L. Oliver, and W. Reik. 2009. Evolution and functions of long noncoding RNAs. Cell 136: 629–641.

    Article  PubMed  CAS  Google Scholar 

  • Qian, D.Z., S.K. Kachhap, S.J. Collis, H.M. Verheul, M.A. Carducci, P. Atadja, and R. Pili. 2006. Class II histone deacetylases are associated with VHL-independent regulation of hypoxia-inducible factor 1 alpha. Cancer Research 66: 8814–8821.

    Article  PubMed  CAS  Google Scholar 

  • Ratcliffe, P.J. 2007. HIF-1 and HIF-2: working alone or together in hypoxia? Journal of Clinical Investigation 117: 862–865.

    Article  PubMed  CAS  Google Scholar 

  • Ravi, R., B. Mookerjee, Z.M. Bhujwalla, C.H. Sutter, D. Artemov, Q. Zeng, L.E. Dillehay, A. Madan, G.L. Semenza, and A. Bedi. 2000. Regulation of tumor angiogenesis by p53-induced degradation of hypoxia-inducible factor 1alpha. Genes & Development 14: 34–44.

    CAS  Google Scholar 

  • Richard, D.E., E. Berra, E. Gothie, D. Roux, and J. Pouyssegur. 1999. p42/p44 mitogen-activated protein kinases phosphorylate hypoxia-inducible factor 1alpha (HIF-1alpha) and enhance the transcriptional activity of HIF-1. Journal of Biological Chemistry 274: 32631–32637.

    Article  PubMed  CAS  Google Scholar 

  • Robert, M.F., S. Morin, N. Beaulieu, F. Gauthier, I.C. Chute, A. Barsalou, and A.R. Macleod. 2003. DNMT1 is required to maintain CpG methylation and aberrant gene silencing in human cancer cells. Nature Genetics 33: 61–65.

    Article  PubMed  CAS  Google Scholar 

  • Salceda, S., and J. Caro. 1997. Hypoxia-inducible factor 1alpha (HIF-1alpha) protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions. Its stabilization by hypoxia depends on redox-induced changes. Journal of Biological Chemistry 272: 22642–22647.

    Article  PubMed  CAS  Google Scholar 

  • Sang, N., J. Fang, V. Srinivas, I. Leshchinsky, and J. Caro. 2002. Carboxyl-terminal transactivation activity of hypoxia-inducible factor 1 alpha is governed by a von Hippel-Lindau protein-independent, hydroxylation-regulated association with p300/CBP. Molecular and Cellular Biology 22: 2984–2992.

    Article  PubMed  CAS  Google Scholar 

  • Sasakawa, Y., Y. Naoe, T. Noto, T. Inoue, T. Sasakawa, M. Matsuo, T. Manda, and S. Mutoh. 2003. Antitumor efficacy of FK228, a novel histone deacetylase inhibitor, depends on the effect on expression of angiogenesis factors. Biochemical Pharmacology 66: 897–906.

    Article  PubMed  CAS  Google Scholar 

  • Saxonov, S., P. Berg, and D.L. Brutlag. 2006. A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters. Proceedings of the National Academy of Sciences of the United States of America 103: 1412–1417.

    Article  PubMed  CAS  Google Scholar 

  • Schindl, M., S.F. Schoppmann, H. Samonigg, H. Hausmaninger, W. Kwasny, M. Gnant, R. Jakesz, E. Kubista, P. Birner, and G. Oberhuber. 2002. Overexpression of hypoxia-inducible factor 1alpha is associated with an unfavorable prognosis in lymph node-positive breast cancer. Clinical Cancer Research 8: 1831–1837.

    PubMed  CAS  Google Scholar 

  • Schmitt, A.M., S. Schmid, T. Rudolph, M. Anlauf, C. Prinz, G. Kloppel, H. Moch, P.U. Heitz, P. Komminoth, and A. Perren. 2009. VHL inactivation is an important pathway for the development of malignant sporadic pancreatic endocrine tumors. Endocrine Related Cancer 16: 1219–1227.

    Article  PubMed  CAS  Google Scholar 

  • Semenza, G.L. 2004. O2-regulated gene expression: transcriptional control of cardiorespiratory physiology by HIF-1. Journal Applied Physiology 96: 1173–1177. discussion 1170–1172.

    Article  CAS  Google Scholar 

  • Semenza, G.L., B.H. Jiang, S.W. Leung, R. Passantino, J.P. Concordet, P. Maire, and A. Giallongo. 1996. Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1. Journal of Biological Chemistry 271: 32529–32537.

    Article  PubMed  CAS  Google Scholar 

  • Sivridis, E., A. Giatromanolaki, K.C. Gatter, A.L. Harris, and M.I. Koukourakis. 2002. Association of hypoxia-inducible factors 1alpha and 2alpha with activated angiogenic pathways and prognosis in patients with endometrial carcinoma. Cancer 95: 1055–1063.

    Article  PubMed  CAS  Google Scholar 

  • Song, T., X. Zhang, C. Wang, Y. Wu, W. Cai, J. Gao, and B. Hong. 2012. MiR-138 suppresses expression of hypoxia-inducible factor 1alpha (HIF-1alpha) in clear cell renal cell carcinoma 786-O cells. Asian Pacific Journal of Cancer Prevention 12: 1307–1311.

    Google Scholar 

  • Sprenger, S.H., J.M. Gijtenbeek, P. Wesseling, R. Sciot, F. Van Calenbergh, M. Lammens, and J.W. Jeuken. 2001. Characteristic chromosomal aberrations in sporadic cerebellar hemangioblastomas revealed by comparative genomic hybridization. Journal of Neurooncology 52: 241–247.

    Article  CAS  Google Scholar 

  • Stephen, J.K., K.M. Chen, M. Raitanen, S. Grenman, and M.J. Worsham. 2009. DNA hypermethylation profiles in squamous cell carcinoma of the vulva. International Journal of Gynecological Pathology 28: 63–75.

    Article  PubMed  Google Scholar 

  • Stiehl, D.P., D.M. Fath, D. Liang, Y. Jiang, and N. Sang. 2007. Histone deacetylase inhibitors synergize p300 autoacetylation that regulates its transactivation activity and complex formation. Cancer Research 67: 2256–2264.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki, M., F. Shinohara, and H. Rikiishi. 2008. Zebularine-induced reduction in VEGF secretion by HIF-1alpha degradation in oral squamous cell carcinoma. Molecular Medicine Report 1: 465–471.

    CAS  Google Scholar 

  • Taguchi, A., K. Yanagisawa, M. Tanaka, K. Cao, Y. Matsuyama, H. Goto, and T. Takahashi. 2008. Identification of hypoxia-inducible factor-1 alpha as a novel target for miR-17-92 microRNA cluster. Cancer Research 68: 5540–5545.

    Article  PubMed  CAS  Google Scholar 

  • Talks, K.L., H. Turley, K.C. Gatter, P.H. Maxwell, C.W. Pugh, P.J. Ratcliffe, and A.L. Harris. 2000. The expression and distribution of the hypoxia-inducible factors HIF-1alpha and HIF-2alpha in normal human tissues, cancers, and tumor-associated macrophages. American Journal of Pathology 157: 411–421.

    Article  PubMed  CAS  Google Scholar 

  • Tanimoto, K., Y. Makino, T. Pereira, and L. Poellinger. 2000. Mechanism of regulation of the hypoxia-inducible factor-1 alpha by the von Hippel-Lindau tumor suppressor protein. EMBO Journal 19: 4298–4309.

    Article  PubMed  CAS  Google Scholar 

  • Thiagalingam, S., K.H. Cheng, H.J. Lee, N. Mineva, A. Thiagalingam, and J.F. Ponte. 2003. Histone deacetylases: unique players in shaping the epigenetic histone code. Annals of the New York Academy of Sciences 983: 84–100.

    Article  PubMed  CAS  Google Scholar 

  • Tian, H., S.L. Mcknight, and D.W. Russell. 1997. Endothelial PAS domain protein 1 (EPAS1), a transcription factor selectively expressed in endothelial cells. Genes & Development 11: 72–82.

    Article  CAS  Google Scholar 

  • Valencia-Sanchez, M.A., J. Liu, G.J. Hannon, and R. Parker. 2006. Control of translation and mRNA degradation by miRNAs and siRNAs. Genes & Development 20: 515–524.

    Article  CAS  Google Scholar 

  • Valera, V.A., B.A. Walter, W.M. Linehan, and M.J. Merino. 2011. Regulatory Effects of microRNA-92 (miR-92) on VHL Gene Expression and the Hypoxic Activation of miR-210 in Clear Cell Renal Cell Carcinoma. Journal of Cancer 2: 515–526.

    Article  PubMed  CAS  Google Scholar 

  • Volland, S., W. Kugler, L. Schweigerer, J. Wilting, and J. Becker. 2009. Stanniocalcin 2 promotes invasion and is associated with metastatic stages in neuroblastoma. International Journal of Cancer 125: 2049–2057.

    Article  CAS  Google Scholar 

  • Vordermark, D. 2002. Expression of hypoxia-inducible factor-1alpha in oligodendrogliomas: its impact on prognosis and on neoangiogenesis. Cancer 94: 2317–2318. author reply 2318–2319.

    Article  PubMed  Google Scholar 

  • Walczak-Drzewiecka, A., M. Ratajewski, L. Pulaski, and J. Dastych. 2010. DNA methylation-dependent suppression of HIF1A in an immature hematopoietic cell line HMC-1. Biochemical and Biophysical Research Communications 391: 1028–1032.

    Article  PubMed  CAS  Google Scholar 

  • Walsh, C.P., J.R. Chaillet, and T.H. Bestor. 1998. Transcription of IAP endogenous retroviruses is constrained by cytosine methylation. Nature Genetics 20: 116–117.

    Article  PubMed  CAS  Google Scholar 

  • Wang, F.S., C.J. Wang, Y.J. Chen, P.R. Chang, Y.T. Huang, Y.C. Sun, H.C. Huang, Y.J. Yang, and K.D. Yang. 2004. Ras induction of superoxide activates ERK-dependent angiogenic transcription factor HIF-1alpha and VEGF-A expression in shock wave-stimulated osteoblasts. Journal of Biological Chemistry 279: 10331–10337.

    Article  PubMed  CAS  Google Scholar 

  • Wang, G.L., and G.L. Semenza. 1995. Purification and characterization of hypoxia-inducible factor 1. Journal of Biological Chemistry 270: 1230–1237.

    Article  PubMed  CAS  Google Scholar 

  • Weber, M., and D. Schubeler. 2007. Genomic patterns of DNA methylation: targets and function of an epigenetic mark. Current Opinion in Cell Biology 19: 273–280.

    Article  PubMed  CAS  Google Scholar 

  • Wenger, R.H. 2002. Cellular adaptation to hypoxia: O2-sensing protein hydroxylases, hypoxia-inducible transcription factors, and O2-regulated gene expression. FASEB Journal 16: 1151–1162.

    Article  PubMed  CAS  Google Scholar 

  • Wenger, R.H., I. Kvietikova, A. Rolfs, G. Camenisch, and M. Gassmann. 1998. Oxygen-regulated erythropoietin gene expression is dependent on a CpG methylation-free hypoxia-inducible factor-1 DNA-binding site. European Journal of Biochemistry 253: 771–777.

    Article  PubMed  CAS  Google Scholar 

  • Yamakuchi, M., S. Yagi, T. Ito, and C.J. Lowenstein. 2011. MicroRNA-22 regulates hypoxia signaling in colon cancer cells. PLoS One 6: e20291.

    Article  PubMed  CAS  Google Scholar 

  • Yang, X.J., and E. Seto. 2003. Collaborative spirit of histone deacetylases in regulating chromatin structure and gene expression. Current Opinion in Genetics & Development 13: 143–153.

    Article  CAS  Google Scholar 

  • Yu, F., S.B. White, Q. Zhao, and F.S. Lee. 2001. HIF-1alpha binding to VHL is regulated by stimulus-sensitive proline hydroxylation. Proceedings of the National Academy of Sciences of the United States of America 98: 9630–9635.

    Article  PubMed  CAS  Google Scholar 

  • Zelzer, E., Y. Levy, C. Kahana, B.Z. Shilo, M. Rubinstein, and B. Cohen. 1998. Insulin induces transcription of target genes through the hypoxia-inducible factor HIF-1alpha/ARNT. EMBO Journal 17: 5085–5094.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, Y., H.H. Ng, H. Erdjument-Bromage, P. Tempst, A. Bird, and D. Reinberg. 1999. Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation. Genes & Development 13: 1924–1935.

    Article  CAS  Google Scholar 

  • Zhou, H., W. Fei, Y. Bai, S. Zhu, E. Luo, K. Chen, and J. Hu. 2012. RNA interference-mediated downregulation of hypoxia-inducible factor-1alpha inhibits angiogenesis and survival of oral squamous cell carcinoma in vitro and in vivo. European Journal of Cancer Prevention 21: 289–299.

    Article  PubMed  CAS  Google Scholar 

  • Zundel, W., C. Schindler, D. Haas-Kogan, A. Koong, F. Kaper, E. Chen, A.R. Gottschalk, H.E. Ryan, R.S. Johnson, A.B. Jefferson, D. Stokoe, and A.J. Giaccia. 2000. Loss of PTEN facilitates HIF-1-mediated gene expression. Genes & Development 14: 391–396.

    CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Korean Health Technology R&D Project, Ministry of Health & Welfare, Republic of Korea (Grant No: A112026; to SL and YML), and by a Grant from the Kyungpook National University Research Fund (2012 to YML).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to You Mie Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nguyen, M.P., Lee, S. & Lee, Y.M. Epigenetic regulation of hypoxia inducible factor in diseases and therapeutics. Arch. Pharm. Res. 36, 252–263 (2013). https://doi.org/10.1007/s12272-013-0058-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-013-0058-x

Keywords

Navigation