Skip to main content

Advertisement

Log in

Epigenetic and Copy Number Variation Analysis in Retinoblastoma by MS-MLPA

  • Research
  • Published:
Pathology & Oncology Research

Abstract

Retinoblastoma is the most common primary intraocular malignancy in children. Two step inactivation of RB1 (M1-M2) represents the key event in the pathogenesis of retinoblastoma but additional genetic and epigenetic events (M3-Mn) are required for tumor development. In the present study, we employed Methylation Specific Multiplex Ligation Probe Assay to investigate methylation status and copy number changes of 25 and 39 oncosuppressor genes, respectively. This technique was applied to analyse 12 retinoblastomas (5 bilateral and 7 unilateral) and results were compared to corresponding normal retina. We identified hypermethylation in seven new genes: MSH6 (50%), CD44 (42%), PAX5 (42%), GATA5 (25%), TP53 (8%), VHL (8%) and GSTP1 (8%) and we confirmed the previously reported hypermethylation of MGMT (58%), RB1 (17%) and CDKN2 (8%). These genes belong to key pathways including DNA repair, pRB and p53 signalling, transcriptional regulation, protein degradation, cell-cell interaction, cellular adhesion and migration. In the same group of retinoblastomas, a total of 29 copy number changes (19 duplications and 10 deletions) have been identified. Interestingly, we found deletions of the following oncosuppressor genes that might contribute to drive retinoblastoma tumorigenesis: TP53, CDH13, GATA5, CHFR, TP73 and IGSF4. The present data highlight the importance of epigenetic changes in retinoblastoma and indicate seven hypermethylated oncosuppressors never associated before to retinoblastoma pathogenesis. This study also confirms the presence of copy number variations in retinoblastoma, expecially in unilateral cases (mean 3 ±1.3) where these changes were found more frequently respect to bilateral cases (mean 1.4 ± 1.1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. MacCarthy A, Draper GJ, Steliarova-Foucher E, Kingston JE (2006) Retinoblastoma incidence and survival in European children (1978–1997) Report from the Automated Childhood Cancer Information System project. Eur J Cancer 42:2092–2102

    Article  PubMed  CAS  Google Scholar 

  2. Xu XL, Fang Y, Lee TC, Forrest D, Gregory-Evans C, Almeida D, Liu A et al (2009) Retinoblastoma has properties of a cone precursor tumor and depends upon cone-specific MDM2 signaling. Cell 137:1018–1031

    Article  PubMed  CAS  Google Scholar 

  3. Knudson AG Jr (1971) Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci U S A 68:820–823

    Article  PubMed  Google Scholar 

  4. Friend SH, Bernards R, Rogelj S, Weinberg RA, Rapaport JM, Albert DM, Dryja TP (1986) A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature 323:643–646

    Article  PubMed  CAS  Google Scholar 

  5. Vogel F (1979) Genetics of retinoblastoma. Hum Genet 52:1–54

    Article  PubMed  CAS  Google Scholar 

  6. Onadim Z, Hogg A, Baird PN, Cowell JK (1992) Oncogenic point mutations in exon 20 of the RB1 gene in families showing incomplete penetrance and mild expression of the retinoblastoma phenotype. Proc Natl Acad Sci U S A 89:6177–6181

    Article  PubMed  CAS  Google Scholar 

  7. Gallie BL, Campbell C, Devlin H, Duckett A, Squire JA (1999) Developmental basis of retinal-specific induction of cancer by RB mutation. Cancer Res 59:1731s–1735s

    PubMed  CAS  Google Scholar 

  8. Corson TW, Gallie BL (2007) One hit, two hits, three hits, more? Genomic changes in the development of retinoblastoma. Genes Chromosomes Cancer 46:617–634

    Article  PubMed  CAS  Google Scholar 

  9. Sampieri K, Amenduni M, Papa FT, Katzaki E, Mencarelli MA, Marozza A, Epistolato MC et al (2009) Array comparative genomic hybridization in retinoma and retinoblastoma tissues. Cancer Sci 100:465–471

    Article  PubMed  CAS  Google Scholar 

  10. Pieretti M, Cavalieri C, Conway PS, Gallion HH, Powell DE, Turker MS (1995) Genetic alterations distinguish different types of ovarian tumors. Int J Cancer 64:434–440

    Article  PubMed  CAS  Google Scholar 

  11. Herman JG, Latif F, Weng Y, Lerman MI, Zbar B, Liu S, Samid D et al (1994) Silencing of the VHL tumor-suppressor gene by DNA methylation in renal carcinoma. Proc Natl Acad Sci U S A 91:9700–9704

    Article  PubMed  CAS  Google Scholar 

  12. Yates DR, Rehman I, Abbod MF, Meuth M, Cross SS, Linkens DA, Hamdy FC et al (2007) Promoter hypermethylation identifies progression risk in bladder cancer. Clin Cancer Res 13:2046–2053

    Article  PubMed  CAS  Google Scholar 

  13. Weisenberger DJ, Siegmund KD, Campan M, Young J, Long TI, Faasse MA, Kang GH et al (2006) CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat Genet 38:787–793

    Article  PubMed  CAS  Google Scholar 

  14. Leong KJ, Wei W, Tannahill LA, Caldwell GM, Jones CE, Morton DG, Matthews GM et al (2011) Methylation profiling of rectal cancer identifies novel markers of early-stage disease. Br J Surg 98:724–734

    Article  PubMed  CAS  Google Scholar 

  15. Harada K, Toyooka S, Maitra A, Maruyama R, Toyooka KO, Timmons CF, Tomlinson GE et al (2002) Aberrant promoter methylation and silencing of the RASSF1A gene in pediatric tumors and cell lines. Oncogene 21:4345–4349

    Article  PubMed  CAS  Google Scholar 

  16. Choy KW, Pang CP, To KF, Yu CB, Ng JS, Lam DS (2002) Impaired expression and promotor hypermethylation of O6-methylguanine-DNA methyltransferase in retinoblastoma tissues. Invest Ophthalmol Vis Sci 43:1344–1349

    PubMed  Google Scholar 

  17. Choy KW, Pang CP, Fan DS, Lee TC, Wang JH, Abramson DH, Lo KW et al (2004) Microsatellite instability and MLH1 promoter methylation in human retinoblastoma. Invest Ophthalmol Vis Sci 45:3404–3409

    Article  PubMed  Google Scholar 

  18. Choy KW, Lee TC, Cheung KF, Fan DS, Lo KW, Beaverson KL, Abramson DH et al (2005) Clinical implications of promoter hypermethylation in RASSF1A and MGMT in retinoblastoma. Neoplasia 7:200–206

    Article  PubMed  CAS  Google Scholar 

  19. Tosi GM, Trimarchi C, Macaluso M, La Sala D, Ciccodicola A, Lazzi S, Massaro-Giordano M et al (2005) Genetic and epigenetic alterations of RB2/p130 tumor suppressor gene in human sporadic retinoblastoma: implications for pathogenesis and therapeutic approach. Oncogene 24:5827–5836

    Article  PubMed  CAS  Google Scholar 

  20. Harada K, Toyooka S, Shivapurkar N, Maitra A, Reddy JL, Matta H, Miyajima K et al (2002) Deregulation of caspase 8 and 10 expression in pediatric tumors and cell lines. Cancer Res 62:5897–5901

    PubMed  CAS  Google Scholar 

  21. Cohen Y, Merhavi-Shoham E, Avraham RB, Frenkel S, Pe’er J, Goldenberg-Cohen N (2008) Hypermethylation of CpG island loci of multiple tumor suppressor genes in retinoblastoma. Exp Eye Res 86:201–206

    Article  PubMed  CAS  Google Scholar 

  22. Jeuken JW, Cornelissen SJ, Vriezen M, Dekkers MM, Errami A, Sijben A, Boots-Sprenger SH et al (2007) MS-MLPA: an attractive alternative laboratory assay for robust, reliable, and semiquantitative detection of MGMT promoter hypermethylation in gliomas. Lab Invest 87:1055–1065

    Article  PubMed  CAS  Google Scholar 

  23. Laird PW (1997) Oncogenic mechanisms mediated by DNA methylation. Mol Med Today 3:223–229

    Article  PubMed  CAS  Google Scholar 

  24. Esteller M (2007) Epigenetic gene silencing in cancer: the DNA hypermethylome. Hum Mol Genet 16 Spec No 1:R50-9

    Google Scholar 

  25. Gerson SL (2004) MGMT: its role in cancer aetiology and cancer therapeutics. Nat Rev Cancer 4:296–307

    Article  PubMed  CAS  Google Scholar 

  26. Jones PA, Laird PW (1999) Cancer epigenetics comes of age. Nat Genet 21:163–167

    Article  PubMed  CAS  Google Scholar 

  27. Richter S, Vandezande K, Chen N, Zhang K, Sutherland J, Anderson J, Han L et al (2003) Sensitive and efficient detection of RB1 gene mutations enhances care for families with retinoblastoma. Am J Hum Genet 72:253–269

    Article  PubMed  CAS  Google Scholar 

  28. Nygren AO, Ameziane N, Duarte HM, Vijzelaar RN, Waisfisz Q, Hess CJ, Schouten JP et al (2005) Methylation-specific MLPA (MS-MLPA): simultaneous detection of CpG methylation and copy number changes of up to 40 sequences. Nucleic Acids Res 33:e128

    Article  PubMed  Google Scholar 

  29. Pegg AE, Dolan ME, Moschel RC (1995) Structure, function, and inhibition of O6-alkylguanine-DNA alkyltransferase. Prog Nucleic Acid Res Mol Biol 51:167–223

    Article  PubMed  CAS  Google Scholar 

  30. Bignami M, O'Driscoll M, Aquilina G, Karran P (2000) Unmasking a killer: DNA O(6)-methylguanine and the cytotoxicity of methylating agents. Mutat Res 462:71–82

    Article  PubMed  CAS  Google Scholar 

  31. Dumenco LL, Allay E, Norton K, Gerson SL (1993) The prevention of thymic lymphomas in transgenic mice by human O6-alkylguanine-DNA alkyltransferase. Science 259:219–222

    Article  PubMed  CAS  Google Scholar 

  32. Becker K, Dosch J, Gregel CM, Martin BA, Kaina B (1996) Targeted expression of human O(6)-methylguanine-DNA methyltransferase (MGMT) in transgenic mice protects against tumor initiation in two-stage skin carcinogenesis. Cancer Res 56:3244–3249

    PubMed  CAS  Google Scholar 

  33. Esteller M, Herman JG (2004) Generating mutations but providing chemosensitivity: the role of O6-methylguanine DNA methyltransferase in human cancer. Oncogene 23:1–8

    Article  PubMed  CAS  Google Scholar 

  34. Toyooka S, Toyooka KO, Maruyama R, Virmani AK, Girard L, Miyajima K, Harada K et al (2001) DNA methylation profiles of lung tumors. Mol Cancer Ther 1:61–67

    PubMed  CAS  Google Scholar 

  35. Maruyama R, Toyooka S, Toyooka KO, Virmani AK, Zochbauer-Muller S, Farinas AJ, Minna JD et al (2002) Aberrant promoter methylation profile of prostate cancers and its relationship to clinicopathological features. Clin Cancer Res 8:514–519

    PubMed  CAS  Google Scholar 

  36. Skorpen F, Krokan HE (1995) The methylation status of the gene for O6-methylguanine-DNA methyltransferase in human Mer+ and Mer- cells. Carcinogenesis 16:1857–1863

    Article  PubMed  CAS  Google Scholar 

  37. Wang L, Zhu D, Zhang C, Mao X, Wang G, Mitra S, Li BF et al (1997) Mutations of O6-methylguanine-DNA methyltransferase gene in esophageal cancer tissues from Northern China. Int J Cancer 71:719–723

    Article  PubMed  CAS  Google Scholar 

  38. Horsfall MJ, Gordon AJ, Burns PA, Zielenska M, van der Vliet GM, Glickman BW (1990) Mutational specificity of alkylating agents and the influence of DNA repair. Environ Mol Mutagen 15:107–122

    Article  PubMed  CAS  Google Scholar 

  39. Esteller M, Risques RA, Toyota M, Capella G, Moreno V, Peinado MA, Baylin SB et al (2001) Promoter hypermethylation of the DNA repair gene O(6)-methylguanine-DNA methyltransferase is associated with the presence of G:C to A:T transition mutations in p53 in human colorectal tumorigenesis. Cancer Res 61:4689–4692

    PubMed  CAS  Google Scholar 

  40. Nakamura M, Watanabe T, Yonekawa Y, Kleihues P, Ohgaki H (2001) Promoter methylation of the DNA repair gene MGMT in astrocytomas is frequently associated with G:C –>A:T mutations of the TP53 tumor suppressor gene. Carcinogenesis 22:1715–1719

    Article  PubMed  CAS  Google Scholar 

  41. Wolf P, Hu YC, Doffek K, Sidransky D, Ahrendt SA (2001) O(6)-Methylguanine-DNA methyltransferase promoter hypermethylation shifts the p53 mutational spectrum in non-small cell lung cancer. Cancer Res 61:8113–8117

    PubMed  CAS  Google Scholar 

  42. Esteller M, Toyota M, Sanchez-Cespedes M, Capella G, Peinado MA, Watkins DN, Issa JP et al (2000) Inactivation of the DNA repair gene O6-methylguanine-DNA methyltransferase by promoter hypermethylation is associated with G to A mutations in K-ras in colorectal tumorigenesis. Cancer Res 60:2368–2371

    PubMed  CAS  Google Scholar 

  43. Esteller M, Herman JG (2002) Cancer as an epigenetic disease: DNA methylation and chromatin alterations in human tumours. J Pathol 196:1–7

    Article  PubMed  CAS  Google Scholar 

  44. Iyer RR, Pluciennik A, Burdett V, Modrich PL (2006) DNA mismatch repair: functions and mechanisms. Chem Rev 106:302–323

    Article  PubMed  CAS  Google Scholar 

  45. Jiricny J (2006) The multifaceted mismatch-repair system. Nat Rev Mol Cell Biol 7:335–346

    Article  PubMed  CAS  Google Scholar 

  46. Jun SH, Kim TG, Ban C (2006) DNA mismatch repair system. Classical and fresh roles. Febs J 273:1609–1619

    Article  PubMed  CAS  Google Scholar 

  47. Stojic L, Brun R, Jiricny J (2004) Mismatch repair and DNA damage signalling. DNA Repair (Amst) 3:1091–1101

    Article  CAS  Google Scholar 

  48. Hong Z, Jiang J, Hashiguchi K, Hoshi M, Lan L, Yasui A (2008) Recruitment of mismatch repair proteins to the site of DNA damage in human cells. J Cell Sci 121:3146–3154

    Article  PubMed  CAS  Google Scholar 

  49. Wu Y, Berends MJ, Mensink RG, Kempinga C, Sijmons RH, van Der Zee AG, Hollema H et al (1999) Association of hereditary nonpolyposis colorectal cancer-related tumors displaying low microsatellite instability with MSH6 germline mutations. Am J Hum Genet 65:1291–1298

    Article  PubMed  CAS  Google Scholar 

  50. Wijnen J, de Leeuw W, Vasen H, van der Klift H, Moller P, Stormorken A, Meijers-Heijboer H et al (1999) Familial endometrial cancer in female carriers of MSH6 germline mutations. Nat Genet 23:142–144

    Article  PubMed  CAS  Google Scholar 

  51. Huang J, Kuismanen SA, Liu T, Chadwick RB, Johnson CK, Stevens MW, Richards SK et al (2001) MSH6 and MSH3 are rarely involved in genetic predisposition to nonpolypotic colon cancer. Cancer Res 61:1619–1623

    PubMed  CAS  Google Scholar 

  52. Berends MJ, Wu Y, Sijmons RH, Mensink RG, van der Sluis T, Hordijk-Hos JM, de Vries EG et al (2002) Molecular and clinical characteristics of MSH6 variants: an analysis of 25 index carriers of a germline variant. Am J Hum Genet 70:26–37

    Article  PubMed  CAS  Google Scholar 

  53. Goodfellow PJ, Buttin BM, Herzog TJ, Rader JS, Gibb RK, Swisher E, Look K et al (2003) Prevalence of defective DNA mismatch repair and MSH6 mutation in an unselected series of endometrial cancers. Proc Natl Acad Sci U S A 100:5908–5913

    Article  PubMed  CAS  Google Scholar 

  54. van der Wal JE, Hermsen MA, Gille HJ, Schouten-Van Meeteren NY, Moll AC, Imhof SM, Meijer GA et al (2003) Comparative genomic hybridisation divides retinoblastomas into a high and a low level chromosomal instability group. J Clin Pathol 56:26–30

    Article  PubMed  Google Scholar 

  55. Mullighan CG, Goorha S, Radtke I, Miller CB, Coustan-Smith E, Dalton JD, Girtman K et al (2007) Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature 446:758–764

    Article  PubMed  CAS  Google Scholar 

  56. Cobaleda C, Schebesta A, Delogu A, Busslinger M (2007) Pax5: the guardian of B cell identity and function. Nat Immunol 8:463–470

    Article  PubMed  CAS  Google Scholar 

  57. Liu W, Li X, Chu ES, Go MY, Xu L, Zhao G, Li L et al (2011) Paired box gene 5 is a novel tumor suppressor in hepatocellular carcinoma through interaction with p53 signaling pathway. Hepatology 53:843–853

    Article  PubMed  CAS  Google Scholar 

  58. Sato H, Wang D, Kudo A (2001) Dissociation of Pax-5 from KI and KII sites during kappa-chain gene rearrangement correlates with its association with the underphosphorylated form of retinoblastoma. J Immunol 166:6704–6710

    PubMed  CAS  Google Scholar 

  59. Matsumura Y, Tarin D (1992) Significance of CD44 gene products for cancer diagnosis and disease evaluation. Lancet 340:1053–1058

    Article  PubMed  CAS  Google Scholar 

  60. Mayer B, Jauch KW, Gunthert U, Figdor CG, Schildberg FW, Funke I, Johnson JP (1993) De-novo expression of CD44 and survival in gastric cancer. Lancet 342:1019–1022

    Article  PubMed  CAS  Google Scholar 

  61. Akiyama Y, Watkins N, Suzuki H, Jair KW, van Engeland M, Esteller M, Sakai H et al (2003) GATA-4 and GATA-5 transcription factor genes and potential downstream antitumor target genes are epigenetically silenced in colorectal and gastric cancer. Mol Cell Biol 23:8429–8439

    Article  PubMed  CAS  Google Scholar 

  62. Guo M, Akiyama Y, House MG, Hooker CM, Heath E, Gabrielson E, Yang SC et al (2004) Hypermethylation of the GATA genes in lung cancer. Clin Cancer Res 10:7917–7924

    Article  PubMed  CAS  Google Scholar 

  63. Guo M, House MG, Akiyama Y, Qi Y, Capagna D, Harmon J, Baylin SB et al (2006) Hypermethylation of the GATA gene family in esophageal cancer. Int J Cancer 119:2078–2083

    Article  PubMed  CAS  Google Scholar 

  64. Hellebrekers DM, Lentjes MH, van den Bosch SM, Melotte V, Wouters KA, Daenen KL, Smits KM et al (2009) GATA4 and GATA5 are potential tumor suppressors and biomarkers in colorectal cancer. Clin Cancer Res 15:3990–3997

    Article  PubMed  CAS  Google Scholar 

  65. Wen XZ, Akiyama Y, Pan KF, Liu ZJ, Lu ZM, Zhou J, Gu LK et al (2010) Methylation of GATA-4 and GATA-5 and development of sporadic gastric carcinomas. World J Gastroenterol 16:1201–1208

    Article  PubMed  CAS  Google Scholar 

  66. Kato MV, Shimizu T, Ishizaki K, Kaneko A, Yandell DW, Toguchida J, Sasaki MS (1996) Loss of heterozygosity on chromosome 17 and mutation of the p53 gene in retinoblastoma. Cancer Lett 106:75–82

    Article  PubMed  CAS  Google Scholar 

  67. Young AP, Schlisio S, Minamishima YA, Zhang Q, Li L, Grisanzio C, Signoretti S et al (2008) VHL loss actuates a HIF-independent senescence programme mediated by Rb and p400. Nat Cell Biol 10:361–369

    Article  PubMed  CAS  Google Scholar 

  68. Lee WH, Morton RA, Epstein JI, Brooks JD, Campbell PA, Bova GS, Hsieh WS et al (1994) Cytidine methylation of regulatory sequences near the pi-class glutathione S-transferase gene accompanies human prostatic carcinogenesis. Proc Natl Acad Sci U S A 91:11733–11737

    Article  PubMed  CAS  Google Scholar 

  69. Indovina P, Acquaviva A, De Falco G, Rizzo V, Onnis A, Luzzi A, Giorgi F et al (2009) Downregulation and aberrant promoter methylation of p16INK4A: a possible novel heritable susceptibility marker to retinoblastoma. J Cell Physiol 223:143–150

    Google Scholar 

  70. Sampieri K, Mencarelli MA, Epistolato MC, Toti P, Lazzi S, Bruttini M, De Francesco S et al (2008) Genomic differences between retinoma and retinoblastoma. Acta Oncol 47:1483–1492

    Article  PubMed  CAS  Google Scholar 

  71. Matsumoto K, Takayama N, Ohnishi J, Ohnishi E, Shirayoshi Y, Nakatsuji N, Ariga H (2001) Tumour invasion and metastasis are promoted in mice deficient in tenascin-X. Genes Cells 6:1101–1111

    Article  PubMed  CAS  Google Scholar 

  72. Levy P, Ripoche H, Laurendeau I, Lazar V, Ortonne N, Parfait B, Leroy K et al (2007) Microarray-based identification of tenascin C and tenascin XB, genes possibly involved in tumorigenesis associated with neurofibromatosis type 1. Clin Cancer Res 13:398–407

    Article  PubMed  CAS  Google Scholar 

  73. Laurie NA, Donovan SL, Shih CS, Zhang J, Mills N, Fuller C, Teunisse A et al (2006) Inactivation of the p53 pathway in retinoblastoma. Nature 444:61–66

    Article  PubMed  CAS  Google Scholar 

  74. Gustmann S, Klein-Hitpass L, Stephan H, Weber S, Bornfeld N, Kaulisch M, Lohmann DR et al (2011) Loss at chromosome arm 16q in retinoblastoma: confirmation of the association with diffuse vitreous seeding and refinement of the recurrently deleted region. Genes Chromosomes Cancer 50:327–337

    Article  PubMed  CAS  Google Scholar 

  75. Gratias S, Rieder H, Ullmann R, Klein-Hitpass L, Schneider S, Boloni R, Kappler M et al (2007) Allelic loss in a minimal region on chromosome 16q24 is associated with vitreous seeding of retinoblastoma. Cancer Res 67:408–416

    Article  PubMed  CAS  Google Scholar 

  76. Sato M, Mori Y, Sakurada A, Fujimura S, Horii A (1998) The H-cadherin (CDH13) gene is inactivated in human lung cancer. Hum Genet 103:96–101

    Article  PubMed  CAS  Google Scholar 

  77. Scolnick DM, Halazonetis TD (2000) Chfr defines a mitotic stress checkpoint that delays entry into metaphase. Nature 406:430–435

    Article  PubMed  CAS  Google Scholar 

  78. Yu X, Minter-Dykhouse K, Malureanu L, Zhao WM, Zhang D, Merkle CJ, Ward IM et al (2005) Chfr is required for tumor suppression and Aurora A regulation. Nat Genet 37:401–406

    Article  PubMed  CAS  Google Scholar 

  79. Chakraborty S, Khare S, Dorairaj SK, Prabhakaran VC, Prakash DR, Kumar A (2007) Identification of genes associated with tumorigenesis of retinoblastoma by microarray analysis. Genomics 90:344–353

    Article  PubMed  CAS  Google Scholar 

  80. Corn PG, Kuerbitz SJ, van Noesel MM, Esteller M, Compitello N, Baylin SB, Herman JG (1999) Transcriptional silencing of the p73 gene in acute lymphoblastic leukemia and Burkitt's lymphoma is associated with 5′ CpG island methylation. Cancer Res 59:3352–3356

    PubMed  CAS  Google Scholar 

  81. Kawano S, Miller CW, Gombart AF, Bartram CR, Matsuo Y, Asou H, Sakashita A et al (1999) Loss of p73 gene expression in leukemias/lymphomas due to hypermethylation. Blood 94:1113–1120

    PubMed  CAS  Google Scholar 

  82. Kuramochi M, Fukuhara H, Nobukuni T, Kanbe T, Maruyama T, Ghosh HP, Pletcher M et al (2001) TSLC1 is a tumor-suppressor gene in human non-small-cell lung cancer. Nat Genet 27:427–430

    Article  PubMed  CAS  Google Scholar 

  83. Ganguly A, Shields CL (2010) Differential gene expression profile of retinoblastoma compared to normal retina. Mol Vis 16:1292–1303

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank retinoblastoma patients and their families.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandra Renieri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Livide, G., Epistolato, M.C., Amenduni, M. et al. Epigenetic and Copy Number Variation Analysis in Retinoblastoma by MS-MLPA. Pathol. Oncol. Res. 18, 703–712 (2012). https://doi.org/10.1007/s12253-012-9498-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12253-012-9498-8

Keywords

Navigation