Skip to main content
Log in

Abuse and dependence liability analysis of methylphenidate in the spontaneously hypertensive rat model of attention-deficit/hyperactivity disorder (ADHD): what have we learned?

  • Review
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

An Erratum to this article was published on 30 April 2013

Abstract

Methylphenidate is the most prescribed stimulant medication for attention-deficit/hyperactivity disorder (ADHD). Despite the well documented clinical benefits of the drug, several questions remain unanswered concerning the effects of extended methylphenidate use (e.g. can methylphenidate be abused by ADHD patients? does repeated methylphenidate treatment produce addiction?). Preclinical studies can help address the long-term safety of clinical treatments, moreover animal studies provide valuable information on the details of drug actions. The spontaneously hypertensive rat (SHR), bred from normotensive Wistar Kyoto rat strain, is considered as the best validated and the most widely used animal model of ADHD. We reviewed the findings of research reports that investigated the abuse and dependence liability of methylphenidate in SHR. In particular, we surveyed the studies which investigated the effects of methylphenidate pretreatment on subsequent methylphenidate-induced conditioned place preference or self-administration for they may give insights into the abuse or dependence liability of long-term methylphenidate treatment in ADHD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adriani, W., and G. Laviola. 2003. Elevated levels of impulsivity and reduced place conditioning with d-amphetamine: Two behavioral features of adolescence in mice. Behavioral Neuroscience 117: 695–703.

    Article  PubMed  CAS  Google Scholar 

  • American Psychiatric Association. 2000. Diagnostic and statistical manual of mental disorders: DSM-IV-TR. APA: Washington DC.

  • Amini, B., P.B. Yang, A.C. Swann, and N. Dafny. 2004. Differential locomotor responses in male rats from three strains to acute methylphenidate. International Journal of Neuroscience 114(9): 1063–1084.

    Article  PubMed  CAS  Google Scholar 

  • Arnsten, A. 2006. Stimulants: Therapeutic actions in ADHD. Neuropsychopharmacology 31: 2376–2383.

    Article  PubMed  CAS  Google Scholar 

  • Arnsten, A., and A. Dudley. 2005. Methylphenidate improves prefrontal cortical cognitive function through alpha2 adrenoceptor and dopamine D1 receptor actions: Relevance to therapeutic effects in attention deficit hyperactivity disorder. Behavioral and Brain Functions 1: 1–2.

    Article  CAS  Google Scholar 

  • Askenasy, E.P., K.H. Taber, P.B. Yang, and N. Dafny. 2007. Methylphenidate (ritalin): Behavioral studies in the rat. International Journal of Neuroscience 117: 757–794.

    Article  PubMed  CAS  Google Scholar 

  • Augustyniak, P.N., S. Kourrich, J.S. Rezazadeh, and A. Arvanitogiannis. 2006. Differential behavioral and neurochemical effects of cocaine after early exposure to methylphenidate in an animal model of attention deficit hyperactivity disorder. Behavioural Brain Research 167: 379–382.

    Article  PubMed  CAS  Google Scholar 

  • Bardo, M.T., and R.A. Bevins. 2000. Conditioned place preference: What does it add to our preclinical understanding of drug reward? Psychopharmacology 153(1): 31–43.

    Article  PubMed  CAS  Google Scholar 

  • Bergman, J., B.K. Madras, S.E. Johnson, and R.D. Spealman. 1989. Effects of cocaine and related drugs in nonhuman primates. III. Self-administration by squirrel monkeys. Journal of Pharmacology and Experimental Therapeutics 251: 150–155.

    PubMed  CAS  Google Scholar 

  • Berridge, K.C., and T.E. Robinson. 1997. What is the role of dopamine in reward: Hedonic impact, reward learning, or incentive salience? Brain Research Reviews 28: 309–369.

    Article  Google Scholar 

  • Berridge, C.W., D.M. Devilbiss, M.E. Andrzejewski, A.F. Arnsten, A.E. Kelley, and B. Schmeichel. 2006. Methylphenidate preferentially increases catecholamine neurotransmission within the prefrontal cortex at low doses that enhance cognitive function. Biological Psychiatry 60: 1111–1120.

    Article  PubMed  CAS  Google Scholar 

  • Bertera, F., M. Mayer, J.A. Opezzo, C.A. Taira, G.F. Bramuglia, and C. Hocht. 2007. Pharmacokinetic–pharmacodynamic modeling of diltiazem in spontaneously hypertensive rats: A microdialysis study. Journal of Pharmacological and Toxicological Methods 56(3): 290–299.

    Article  PubMed  CAS  Google Scholar 

  • Bhargava, H.N., and V.M. Villar. 1992. Pharmacodynamics and pharmacokinetics of intravenously administered morphine in spontaneously hypertensive and normotensive Wistar-Kyoto rats. Journal of Pharmacology and Experimental Therapeutics 261(1): 290–296.

    PubMed  CAS  Google Scholar 

  • Biederman, J., and S.V. Faraone. 2005. Attention-deficit hyperactivity disorder. Lancet 366: 237–248.

    Article  PubMed  Google Scholar 

  • Biederman, J., S.V. Faraone, T. Spencer, T. Wilens, E. Mick, and K.A. Lapey. 1994. Gender differences in a sample of adults with attention deficit hyperactivity disorder. Psychiatry Research 53(1): 13–29.

    Article  PubMed  CAS  Google Scholar 

  • Botly, L.C., C.L. Burton, Z. Rizos, and P.J. Fletcher. 2008. Characterization of methylphenidate self-administration and reinstatement in the rat. Psychopharmacology (Berl) 199: 55–66.

    Article  CAS  Google Scholar 

  • Carboni, E., A. Silvagni, V. Valentini, and G. DiChiara. 2003. Effect of amphetamine, cocaine and depolarization by high potassium on extracellular dopamine in the nucleus accumbens shell of SHR rats. An in vivo microdyalisis study. Neuroscience and Biobehavioral Reviews 27: 653–659.

    Article  PubMed  CAS  Google Scholar 

  • Carey, M.P., L.M. Diewald, F.J. Esposito, M.P. Pellicano, U.A. Gironi Carnevale, J.A. Sergeant, M. Papa, and A.G. Sadile. 1998. Differential distribution, affinity and plasticity of dopamine D-1 and D-2 receptors in the target sites of the mesolimbic system in an animal model of ADHD. Behavioural Brain Research 94(1): 173–185.

    Article  PubMed  CAS  Google Scholar 

  • Carter, L.P., and R.R. Griffiths. 2009. Principles of laboratory assessment of drug abuse liability and implications for clinical development. Drug and Alcohol Dependence 105(Suppl 1): S14–S25.

    Article  PubMed  CAS  Google Scholar 

  • Cohuet, G., and H. Struijker-Boudier. 2006. Mechanisms of target organ damage caused by hypertension: Therapeutic potential. Pharmacology & Therapeutics 111: 81–98.

    Article  CAS  Google Scholar 

  • Dalley, J.W., D.E. Theobald, D. Cerry, J.A. Milstein, K. Laane, B.J. Everitt, and T.W. Robbins. 2005. Cognitive sequelae of intravenous amphetamine self-administration in rats: Evidence for selective effects on attentional performance. Neuropsychopharmacology 30: 525–537.

    Article  PubMed  CAS  Google Scholar 

  • Dela Peña, I.C., H.S. Ahn, J.Y. Choi, C.Y. Shin, J.H. Ryu, and J.H. Cheong. 2011. Methylphenidate self-administration and conditioned place preference in an animal model of attention deficit hyperactivity disorder-the spontaneously hypertensive rat. Behavioural Pharmacology 22: 31–39.

    Article  PubMed  CAS  Google Scholar 

  • Dela Peña, I.C., J.C. Lee, H.L. Lee, T.S. Woo, H.C. Lee, A.R. Sohn, and J.H. Cheong. 2012a. Differential behavioral responses of the spontaneously hypertensive rat to methylphenidate and methamphetamine: Lack of a rewarding effect of repeated methylphenidate treatment. Neuroscience Letters 514(2): 189–193.

    Article  PubMed  CAS  Google Scholar 

  • Dela Peña, I.C., S.Y. Yoon, J.C. Lee, J.B. Dela Peña, A.R. Sohn, J.H. Ryu, C.Y. Shin, and J.H. Cheong. 2012b. Methylphenidate treatment in spontaneously hypertensive rat: Influence on methylphenidate self-administration and reinstatement in comparison with Wistar rats. Psychopharmacology (Berl) 221(2): 217–226.

    Article  CAS  Google Scholar 

  • de Villiers, A.S., V.A. Russell, T. Sagvolden, A. Searson, A. Jaffer, and J.F. Taljaard. 1995. alpha2-Adrenoceptor mediated inhibition of [3H]dopamine release from nucleus accumbens slices and monoamine levels in a rat model for attention deficit hyperactivity disorder. Neurochemical Research 20: 357–363.

    Article  Google Scholar 

  • Dommet, E., E. Henderson, and M. Westwell. 2008. Methylphenidate amplifies long-term plasticity in the hippocampus via noradrenergic mechanisms. Learning & Memory 15: 580–586.

    Article  Google Scholar 

  • Epstein, D.H., K.L. Preston, J. Stewart, and Y. Shaham. 2006. Toward a model of drug relapse: An assessment of the validity of the reinstatement procedure. Psychopharmacology (Berl) 189: 1–16.

    Article  CAS  Google Scholar 

  • Feltenstein, M.W., and R.E. See. 2008. The neurocircuitry of addiction: An overview. British Journal of Pharmacology 154(2): 261–274.

    Article  PubMed  CAS  Google Scholar 

  • Fletcher, P.J., K.M. Korth, J. Stewart, and J.W. Chambers. 1999. Depletion of brain serotonin following intra-raphe injections of 5,7-dihydroxytryptamine does not alter d-amphetamine self-administration across different schedules and access conditions. Psychopharmacology (Berl) 146: 185–193.

    Article  CAS  Google Scholar 

  • Gatley, S.J., S.M. Meehan, R. Chen, D.F. Pan, and M.D. Schechter. 1996. Place preference and microdialysis studies with two derivatives of methylphenidate. Life Sciences 58: PL345–PL352.

    Article  PubMed  CAS  Google Scholar 

  • Gerasimov, M.R., M. Franceschi, N.D. Volkow, A. Gifford, S.J. Gatley, D. Marsteller, P.E. Molina, and S.L. Dewey. 2000. Comparison between intraperitoneal and oral methylphenidate administration: Microdialysis and locomotor activity study. Journal of Pharmacology and Experimental Therapeutics 295: 51–57.

    PubMed  CAS  Google Scholar 

  • Gordon, S.M., F. Tulak, and J. Troncale. 2004. Prevalence and characteristics of adolescent patients with co-occurring ADHD and substance dependence. Journal of Addictive Diseases 23(4): 31–40.

    Article  PubMed  Google Scholar 

  • Grund, T., K. Lehmann, N. Bock, A. Rothenberger, and G. Teuchert-Noodt. 2006. Influence of methylphenidate on brain development: An update of recent animal experiments. Behavioral and Brain Functions 2: 2.

    Article  PubMed  CAS  Google Scholar 

  • Hannestad, J., J.D. Gallezot, B. Planeta-Wilson, S.F. Lin, W.A. Williams, C.H. van Dyck, R.T. Malison, R.E. Carson, and Y.S. Ding. 2010. Clinically relevant doses of methylphenidate significantly occupy norepinephrine transporters in humans in vivo. Biological Psychiatry 68(9): 854–860.

    Article  PubMed  CAS  Google Scholar 

  • Harvey, R.C., S. Sen, A. Deaciuc, L.P. Dwoskin, and K.M. Kantak. 2011. Methylphenidate treatment in adolescent rats with an attention deficit/dyperactivity disorder phenotype: Cocaine addiction vulnerability and dopamine transporter function. Neuropsychopharmacology 36(4): 837–847.

    Article  PubMed  CAS  Google Scholar 

  • Heal, D.J., S.C. Cheethamm, and S.L. Smith. 2009. The neuropharmacology of ADHD drugs in vivo: Insights on efficacy and safety. Neuropharmacology 57: 608–618.

    Article  PubMed  CAS  Google Scholar 

  • Hechtman, L., and B. Greenfield. 2003. Long-term use of stimulants in children with attention deficit hyperactivity disorder: Safety, efficacy, and long-term outcome. Paediatric Drugs 5: 787–794.

    Article  PubMed  Google Scholar 

  • Hong, Z., G. Cai, W. Ma, J. Wen, Y. Chai, and G. Fan. 2012. Rapid determination and comparative pharmacokinetics of tetrahydropalmatine in spontaneously hypertensive rats and normotensive rats. Biomedical Chromatography 26(6): 749–753.

    Article  PubMed  CAS  Google Scholar 

  • Izenwasser, S. 2005. Differential effects of psychoactive drugs in adolescents and adults. Critical Reviews in Neurobiology 17(2): 51–67.

    Article  PubMed  CAS  Google Scholar 

  • Jentsch, J.D., and J.R. Taylor. 1999. Impulsivity resulting from frontostriatal dysfunction in drug abuse: Implications for the control of behavior by reward-related stimuli. Psychopharmacology 146: 73–390.

    Article  Google Scholar 

  • Johansen, E.B., H. Aase, A. Meyer, and T. Sagvolden. 2002. Attention-deficit/hyperactivity disorder (ADHD) behaviour explained by dysfunctioning reinforcement and extinction processes. Behavioural Brain Research 130: 37–45.

    Article  PubMed  Google Scholar 

  • Katusic, S.K., W.J. Barbaresi, R.C. Colligan, A.L. Weaver, C.L. Leibson, and S.J. Jacobsen. 2005. Psychostimulant treatment and risk for substance abuse among young adults with a history of attentiondeficit/hyperactivity disorder: A population-based, birth cohort study. Journal of Child and Adolescent Psychopharmacology 15: 764–776.

    Article  PubMed  Google Scholar 

  • Kiyatkin, E.A., and G.V. Rebec. 1996. Dopaminergic modulation of glutamate-induced excitations of neurons in the neostriatum and nucleus accumbens of awake, unrestrained rats. Journal of Neurophysiology 75: 142–153.

    PubMed  CAS  Google Scholar 

  • Kollins, S.H. 2008. ADHD, substance use disorders, and psychostimulant treatment: Current literature and treatment guidelines. Journal of Attention Disorders 12(2): 115–125.

    Article  PubMed  Google Scholar 

  • Kollins, S.H., E.K. MacDonald, and C.R. Rush. 2001. Assessing the abuse potential of methylphenidate in nonhuman and human subjects: A review. Pharmacology, Biochemistry and Behavior 68: 611–627.

    Article  CAS  Google Scholar 

  • Kuczenski, R., and D.S. Segal. 2001. Locomotor effects of acute and repeated threshold doses of amphetamine and methylphenidate: Relative roles of dopamine and norepinephrine. Journal of Pharmacology and Experimental Therapeutics 296: 876–883.

    PubMed  CAS  Google Scholar 

  • Lambert, N.M., and C.S. Hartsough. 1998. Prospective study of tobacco smoking and substance dependencies among samples of ADHD and non-ADHD participants. Journal of Learning Disabilities 31(6): 533–544.

    Article  PubMed  CAS  Google Scholar 

  • LeBlanc-Duchin, D., and H. Taukulis. 2007. Chronic oral methylphenidate administration to periadolescent rats yields prolonged impairment of memory for objects. Neurobiology Learning Memory 88: 312–320.

    Article  CAS  Google Scholar 

  • Linthorst, A.C., W. van den Buuse, D.H. de Jong, and M. Versteeg. 1990. Electrically stimulated [3H] dopamine and [14C]acetylcholine release from nucleus caudate slices: Differences between spontaneously hypertensive rats and Wistar Kyoto rats. Brain Research 509: 266–272.

    Article  PubMed  CAS  Google Scholar 

  • Marco, E.M., W. Adriani, L.A. Ruocco, R. Canese, A.G. Sadile, and G. Laviola. 2011. Neurobehavioral adaptations to methylphenidate: The issue of early adolescent exposure. Neuroscience and Biobehavioral Reviews 35: 1722–1739.

    Article  PubMed  CAS  Google Scholar 

  • Melis, M., S. Spiga, and M. Diana. 2005. The dopamine hypothesis of drug addiction: Hypodopaminergic state. International Review of Neurobiology 63: 101–154.

    Article  PubMed  CAS  Google Scholar 

  • Meririnne, E., A. Kankaanpaam, and T. Seppala. 2001. Rewarding properties of methylphenidate: Sensitization by prior exposure to the drug and effects of dopamine D1- and D2-receptor antagonists. Journal of Pharmacology and Experimental Therapeutics 298: 539–550.

    PubMed  CAS  Google Scholar 

  • Michelson, D., H.A. Read, D.D. Ruff, J. Witcher, S. Zhang, and J. McCracken. 2007. CYP2D6 and clinical response to atomoxetine in children and adolescents with ADHD. Journal of the American Academy of Child and Adolescent Psychiatry 46(2): 242–251.

    Article  PubMed  Google Scholar 

  • Moore, K.E. 1978. Amphetamines: Biochemical and behavioural actions in animals. In Handbook of psychopharmacology, ed. L.L. Iversen, S.D. Iversen, and S.H. Snyder, 41–98. New York: Plenum Press.

    Google Scholar 

  • Murphy, K., and R.A. Barley. 1996. Attention deficit hyperactivity disorder adults: Comorbidities and adaptive impairments. Comprehensive Psychiatry 37(6): 393–401.

    Article  PubMed  CAS  Google Scholar 

  • Nielsen, J.A., N.J. Duda, D.J. Moler, and K.E. Moore. 1984. Self-administration of central stimulants by rats: A comparison of the effects of d-amphetamine, methylphenidate and McNeil 4612. Pharmacology, Biochemistry and Behavior 20: 227–232.

    Article  CAS  Google Scholar 

  • Nemoda, Z., N. Angyal, Z. Tarnok, J. Gadoros, and M. Sasvari-Szekely. 2009. Carboxylesterase 1 gene polymorphism and methylphenidate response in ADHD. Neuropharmacology 57(7–8): 731–733.

    Article  PubMed  CAS  Google Scholar 

  • O’Connor, E.C., K. Chapman, P. Butler, and A.N. Mead. 2011. The predictive validity of the rat self-administration model for abuse liability. Neuroscience and Biobehavioral Reviews 35(3): 912–938.

    Article  PubMed  CAS  Google Scholar 

  • Ohlmeier, M.D., K. Peters, and B.T. Te Wildt. 2008. Comorbidity of alcohol and substance dependence with attention-deficit/hyperactivity disorder (ADHD). Alcohol and Alcoholism 43(3): 300–304.

    Article  PubMed  Google Scholar 

  • Okamoto, K., and K. Aoki. 1963. Development of a strain of spontaneously hypertensive rats. Japanese Circulation Journal 27: 282–293.

    Article  PubMed  CAS  Google Scholar 

  • Pandolfo, P., F. Pamplona, R. Prediger, and R. Takahashi. 2007. Increased sensitivity of adolescent spontaneously hypertensive rats, an animal model of attention deficit hyperactivity disorder, to the locomotor stimulation induced by cannabinoid receptor agonist WIN 55,212-2. European Journal of Pharmacology 563: 141–148.

    Article  PubMed  CAS  Google Scholar 

  • Pierce, R.C., and P.W. Kalivas. 1997. A circuitry model of the expression of behavioral sensitization to amphetamine-like psychostimulants. Brain Research Reviews 25: 192–216.

    Article  PubMed  CAS  Google Scholar 

  • Rapoport, J.L., and G. Inoff-Germain. 2002. Responses to methylphenidate in attention-deficit/hyperactivity disorder and normal children: Update 2002. Journal of Attention Disorders 6(Suppl 1): S57–S60.

    PubMed  Google Scholar 

  • Reja, V., A.K. Goodchild, J.K. Phillips, and P.M. Pilowsky. 2002. Tyrosine hydroxylase gene expression in ventrolateral medulla oblongata of WKY and SHR: A quantitative real-time polymerase chain reaction study. Autonomic Neuroscience 98(1–2): 79–84.

    Article  PubMed  CAS  Google Scholar 

  • Richelson, E., and M. Pfenning. 1984. Blockade by antidepressants and related compounds of biogenic amine uptake into rat brain synaptosomes: Most antidepressants selectively block norepinephrine uptake. European Journal of Pharmacology 104: 277–286.

    Article  PubMed  CAS  Google Scholar 

  • Robbins, T.W. 2002. ADHD and addiction. Nature Medicine 8: 24–25.

    Article  PubMed  CAS  Google Scholar 

  • Rush, C.R., and R.W. Baker. 2001. Behavioral pharmacological similarities between methylphenidate and cocaine in cocaine abusers. Experimental & Clinical Psychopharmacology 9: 59–73.

    Article  CAS  Google Scholar 

  • Russell, V.A. 2002. Hypodopaminergic and hypernoradrenergic activity in prefrontal cortex slices of an animal model for attention-deficit hyperactivity disorder—The spontaneously hypertensive rat. Behavioural Brain Research 130(1–2): 191–196.

    Article  PubMed  CAS  Google Scholar 

  • Russell, V., A. de Villiers, T. Sagvolden, M. Lamm, and J. Taljaard. 1998. Differences between electrically-, ritalin- and d-amphetamine-stimulated release of [3H]dopamine from brain slices suggest impaired vesicular storage of dopamine in an animal model of attention-deficit hyperactivity disorder. Behavioural Brain Research 94(1): 163–171.

    Article  PubMed  CAS  Google Scholar 

  • Russell, V.A., A.S. de Villiers, T. Sagvolden, M.C. Lamm, and J.J. Taljaard. 2000. Methylphenidate affects striatal dopamine differently in an animal model for attention deficit/hyperactivity disorder—The spontaneously hypertensive rat. Brain Research Bulletin 53: 187–192.

    Article  PubMed  CAS  Google Scholar 

  • Sagvolden, T. 2000. Behavioral validation of the spontaneously hypertensive rat (SHR) as an animal model of attention-deficit/hyperactivity disorder (AD/HD). Neuroscience & Biobehavioral Reviews 24: 31–39.

    Article  CAS  Google Scholar 

  • Sagvolden, T., E.B. Johansen, H. Aase, and V.A. Russell. 2005a. A dynamic developmental theory of attention-deficit/hyperactivity disorder (ADHD) predominantly hyperactive/impulsive and combined subtypes. Journal of Behavioral and Brain Science 28: 397–468.

    Google Scholar 

  • Sagvolden, T., E.B. Johansen, G. Wøien, S.I. Walaas, J. Storm-Mathisen, L.H. Bergersen, O. Hvalby, V. Jensen, H. Aase, V.A. Russell, P.R. Killeen, T. Dasbanerjee, F.A. Middleton, and S.V. Faraone. 2009. The spontaneously hypertensive rat model of ADHD—The importance of selecting the appropriate reference strain. Neuropharmacology 57(7–8): 619–626.

    Article  PubMed  CAS  Google Scholar 

  • Sagvolden, T., V.A. Russell, H. Aase, E.B. Johansen, and M. Farshbaf. 2005b. Rodent models of attention-deficit/hyperactivity disorder. Biological Psychiatry 57: 1239–1247.

    Article  PubMed  Google Scholar 

  • Schenk, S., and B. Partridge. 1999. Cocaine-seeking produced by experimenter-administered drug injections: Dose–effect relationships in rats. Psychopharmacology (Berl) 147: 285–290.

    Article  CAS  Google Scholar 

  • Scherer, E., M. da Cunha, C. Matte, F. Schmitz, C. Netto, and A. Wyse. 2010. Methylphenidate affects memory, brain-derived neurotrophic factor immunocontent and brain acetylcholinesterase activity in the rat. Neurobiology of Learning Memory 94: 247–253.

    Article  CAS  Google Scholar 

  • Simchon, Y., A. Weizman, and M. Rehavi. 2010. The effect of chronic methylphenidate administration on presynaptic dopaminergic parameters in a rat model for ADHD. European Neuropsychopharmacology 10: 714–720.

    Article  CAS  Google Scholar 

  • Soeters, H.S., F.M. Howells, and V.A. Russell. 2008. Methylphenidate does not increase ethanol consumption in a rat model for attention-deficit hyperactivity disorder—The spontaneously hypertensive rat. Metabolic Brain Disease 23(3): 303–314.

    Article  PubMed  CAS  Google Scholar 

  • Solanto, M.V. 1998. Neuropsychopharmacological mechanisms of stimulant drug action in attention-deficit hyperactivity disorder: A review and integration. Behavioural Brain Research 94: 127–152.

    Article  PubMed  CAS  Google Scholar 

  • Sonuga-Barke, E.J. 2005. Causal models of attention-deficit/hyperactivity disorder: From common simple deficits to multiple developmental pathways. Biological Psychiatry 57: 1231–1238.

    Article  PubMed  Google Scholar 

  • Spear, L.P., and S.C. Brake. 1983. Periadolescence age: Age-dependent behavior and psychopharmacological responsivity in rats. Developmental Psychobiology 16: 83–109.

    Article  PubMed  CAS  Google Scholar 

  • Strazzullo, P., F. Galletti, and G. Barba. 2003. Altered renal handling of sodium I human hypertension. Short review of the evidence. Hypertension 41: 1000–1005.

    Article  PubMed  CAS  Google Scholar 

  • Suto, N., J.D. Austin, L.M. Tanabe, M.K. Kramer, D.A. Wright, and P. Vezina. 2002. Previous exposure to VTA amphetamine enhances cocaine self-administration under a progressive ratio schedule in a D1 dopamine receptor dependent manner. Neuropsychopharmacology 27: 970–979.

    Article  PubMed  CAS  Google Scholar 

  • Swanson, J.M., J.A. Sergeant, E. Taylor, E.J. Sonuga-Barke, P.S. Jensen, and D.P. Cantwell. 1998. Attention deficit disorder and hyperkinetic disorder. Lancet 351: 429–433.

    Article  PubMed  CAS  Google Scholar 

  • Tzschentke, T.M. 2007. Measuring reward with the conditioned place preference (CPP) paradigm: Update of the last decade. Addiction Biology 12: 227–462.

    Article  PubMed  CAS  Google Scholar 

  • Uhl, G. 2004. Molecular genetic underpinnings of human substance abuse vulnerability: Likely contributions to understanding addiction as a mnemonic process. Neuropharmacology 47: 140–147.

    Article  PubMed  CAS  Google Scholar 

  • Vendruscolo, L.F., G.S. Izidio, and R.N. Takahashi. 2009. Drug reinforcement in a rat model of attention deficit/hyperactivity disorder—The spontaneously hypertensive rat (SHR). Current Drug Abuse Reviews 2: 177–183.

    Article  PubMed  CAS  Google Scholar 

  • Vendruscolo, L.F., G.S. Izidio, R.N. Takahashi, and A. Ramos. 2008. Chronic methylphenidate treatment during adolescence increases anxiety-related behaviors and ethanol drinking in adult spontaneously hypertensive rats. Behavioural Pharmacology 19: 21–27.

    Article  PubMed  CAS  Google Scholar 

  • Ventura, R., S. Cabib, A. Alcaro, C. Orsini, and S. Puglisi-Allegra. 2003. Norepinephrine in the prefrontal cortex is critical for amphetamine-induced reward and mesoaccumbens dopamine release. Journal of Neuroscience 23: 1879–1885.

    PubMed  CAS  Google Scholar 

  • Volkow, N.D., and T.R. Insel. 2003. What are the long-term effects of methylphenidate treatment? Biological Psychiatry 54: 1307–1309.

    Article  PubMed  Google Scholar 

  • Volkow, N.D., and J.M. Swanson. 2003. Variables that affect the clinical use and abuse of methylphenidate in the treatment of ADHD. American Journal of Psychiatry 160: 1909–1918.

    Article  PubMed  Google Scholar 

  • Volkow, N.D., G.J. Wang, J.S. Fowler, J. Logan, S.J. Gatley, C. Wong, R. Hitzemann, and N.R. Pappas. 1999. Reinforcing effects of psychostimulants in humans are associated with increases in brain dopamine and occupancy of D(2) receptors. Journal of Pharmacology and Experimental Therapeutics 291: 409–415.

    PubMed  CAS  Google Scholar 

  • Volkow, N.D., G. Wang, J.S. Fowler, J. Logan, M. Gerasimov, L. Maynard, Y. Ding, S.J. Gatley, A. Gifford, and D. Franceschi. 2001. Therapeutic doses of oral methylphenidate significantly increase extracellular dopamine in the human brain. Journal of Neuroscience 21(RC121): 1–5.

    Google Scholar 

  • Weinshenker, D., and J.P. Schroeder. 2007. There and back again: A tale of norepinephrine and drug addiction. Neuropsychopharmacology 32(7): 1433–1451.

    Article  PubMed  CAS  Google Scholar 

  • Wilens, T.E., L.A. Adler, J. Adams, S. Sgambati, J. Rotrosen, R. Sawtelle, L. Utzinger, and S. Fusillo. 2008. Misuse and diversion of stimulants prescribed for ADHD: A systematic review of the literature. Journal of the American Academy of Child and Adolescent Psychiatry 47: 21–31.

    Article  PubMed  Google Scholar 

  • Wilens, T.E., A. Kwon, S. Tanguay, R. Chase, H. Moore, S.V. Faraone, and J. Biederman. 2005a. Characteristics of adults with attention deficit hyperactivity disorder plus substance use disorder: The role of psychiatric comorbidity. American Journal on Addictions 14(4): 319–327.

    Article  PubMed  Google Scholar 

  • Wilens, T.E., S.V. Faraone, J. Biederman, and S. Gunawardene. 2005b. Does stimulant therapy of attention-deficit/hyperactivity disorder beget later substance abuse? A meta-analytic review of the literature. Pediatrics 111(1): 179–185.

    Article  Google Scholar 

  • Wilson, J., and F. Levin. 2005. Attention-deficit/hyperactivity disorder and early-onset substance use disorders. Journal of Child and Adolescent Psychopharmacology 15: 751–763.

    Article  PubMed  Google Scholar 

  • Winterstein, A.G., T. Gerhard, J. Shuster, and A. Saidi. 2009. Cardiac safety of methylphenidate versus amphetamine salts in the treatment of ADHD. Pediatrics 124: e75–e80.

    Article  PubMed  Google Scholar 

  • Wooters, T.E., M.T. Walton, and M.T. Bardo. 2011. Oral methylphenidate establishes a conditioned place preference in rats. Neuroscience Letters 487: 293–296.

    Article  PubMed  CAS  Google Scholar 

  • Yang, P.B., A. Behrang, A. Swann, and N. Dafny. 2003. Strain differences in the behavioral responses of male rats to chronically administered methylphenidate. Brain Research 971: 39–152.

    Article  CAS  Google Scholar 

  • Yang, P.B., D.O. Cuellar, A.C. Swann, and N. Dafny. 2011. Age and genetic strain differences in response to chronic methylphenidate administration. Behavioural Brain Research 218: 206–217.

    Article  PubMed  CAS  Google Scholar 

  • Yang, P.B., A.C. Swann, and N. Dafny. 2006. Acute and chronic methylphenidate dose response assessment on three adolescent male rat strains. Brain Research Bulletin 71(1–3): 301–310.

    Article  PubMed  CAS  Google Scholar 

  • Yano, M., and H. Steiner. 2007. Methylphenidate and cocaine: The same effects on gene regulation. Trends in Pharmacological Sciences 28(11): 588–596.

    Article  PubMed  CAS  Google Scholar 

  • Yeung, P.K., A. Alcos, J. Tang, and W.L. Casley. 2008. Pharmacokinetics and metabolism of diltiazem following multiple doses: Comparing normotensive rat vs. hypertensive rat models in vivo. Drug Metabolism Letters 2(2): 146–150.

    Article  PubMed  CAS  Google Scholar 

  • Zakharova, E., G. Leoni, I. Kichko, and S. Izenwasser. 2009a. Differential effects of methamphetamine and cocaine on conditioned place preference and locomotor activity in adult and adolescent male rats. Behavioural Brain Research 198(1): 45–50.

    Article  PubMed  CAS  Google Scholar 

  • Zakharova, E., D. Wade, and S. Izenwasser. 2009b. Sensitivity to cocaine conditioned reward depends on sex and age. Pharmacology, Biochemistry and Behavior 92(1): 131–134.

    Article  CAS  Google Scholar 

  • Zhang, X.Y., and T.A. Kosten. 2007. Previous exposure to cocaine enhances cocaine self-administration in an alpha 1-adrenergic receptor dependent manner. Neuropsychopharmacology 32: 638–645.

    Article  PubMed  CAS  Google Scholar 

  • Zito, J.M., D.J. Safer, S. dosReis, J.F. Gardner, M. Boles, and F. Lynch. 2000. Trends in the prescribing of psychotropic medications to preschoolers. JAMA 283: 1025–1030.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial supports from the Korea Healthcare technology R and D project, Ministry for Health and Welfare Affairs, Republic of Korea (grant number A120013) and Sahmyook University. We have no conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae Hoon Cheong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

dela Peña, I., Cheong, J.H. Abuse and dependence liability analysis of methylphenidate in the spontaneously hypertensive rat model of attention-deficit/hyperactivity disorder (ADHD): what have we learned?. Arch. Pharm. Res. 36, 400–410 (2013). https://doi.org/10.1007/s12272-013-0037-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-013-0037-2

Keywords

Navigation