Skip to main content
Log in

Synthesis, antimicrobial, and antiviral activities of some new 5-sulphonamido-8-hydroxyquinoline derivatives

  • Research Articles
  • Drug Design and Discovery
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

A series of fused pyranopyrazole and pyranoimidazole, namely 5-(3,6-diamino-4-aryl-5-carbonitrile-pyrano(2,3-c)pyrazol-2-yl)sulphonyl-8-hydroxyquinolines (5a–e), 5-(6-amino-4-aryl-5-carbonitrile-pyrano(2,3-c)pyrazol-3-yl)sulphonamido-8-hydroxyquinolines (6a-e), 5-(2-thioxo-4-aryl-5-carbonitrile-6-amino-pyrano(2,3-d)imidazol-2-yl)sulphonyl-8-hydroxyquinolines (10a-e), and 5-(2-oxo-4-aryl-5-carbonitrile-6-amino-pyrano(2,3-d)imidazol-2-yl) sulphonyl-8-hydroxyquinolines (11a-e), have been prepared via condensation of some arylidine malononitriles with 5-sulphonamido-8-hydroxyquinoline derivatives 3, 4, 8 and 9. All the synthesized compounds were screened for their antimicrobial activities, and most of the tested compounds showed potent inhibition growth activity towards Escherichia coli, Pseudomonas aeruginosa (Gramnegative bacteria). Furthermore, six selected compounds were tested for their antiviral activity against avian paramyxovirus type1 (APMV-1) and laryngotracheitis virus (LTV), and the results showed that a concentration range of 3-4 μg per mL of compounds 2, 3, and 4 showed marked viral inhibitory activity for APMV-1 of 5000 tissue culture infected dose fifty (TCID50) and LTV of 500 TCID50 in Vero cell cultures based on their cytopathic effect. Chicken embryo experiments show that compounds 2, 3, and 4 possess high antiviral activity in vitro with an inhibitory concentration fifty (IC50) range of 3–4 μg per egg against avian APMV-1 and LTV and their toxic concentration fifty (CC50) of 200–300 μg per egg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bankovskis, J., Cirule, M., Brusilovskii, P. I., and Tsilinskaya, I. A., Synthesis of 5-alkylthio-8-hydroxyquinolines. Khim. Geterotsiklicheskikh Soedin., 11, 1501–1504 (1979).

    Google Scholar 

  • Barry, A. L. and Thornsberry, C., Susceptibility Testing: Diffusion Test Procedures, in Manual of Clinical Microbiology. Lennette, E. H., Balows, A., Hausler, W. J., Jr., and Truant, J. P. (Eds.), 3rd ed. American Society for Microbiology, Washington (DS), pp. 463–474, (1980).

    Google Scholar 

  • Callejo, M. J., Lafuente, P., Martín-León, N., Quinteiro, M., Seoane, C., and Soto, J. L., A convenient preparation of [1, 2,4]triazolo[1,5-a]pyridines from acetohydrazide derivatives. Synthetic and mechanistic aspects. J. Chem. Soc. Perkin Trans. I, 1687–1690 (1990).

  • Chen, S., Chen, R., He, M., Pang, R., Tan, Z., and Yang, M., Design, synthesis, and biological evaluation of novel quinoline derivatives as HIV-1 Tat-TAR interaction inhibitors. Bioorg. Med. Chem., 17, 1948–1956 (2009).

    Article  PubMed  Google Scholar 

  • Corson, B. B. and Stoughton, R. W., Reactions of alpha, betaunsaturated dinitriles. J. Am. Chem. Soc., 50, 2825–2837 (1928).

    Article  CAS  Google Scholar 

  • Cox, S., Buontempo, P. J., Wright-Minogue, J., DeMartino, J. L., Skelton, A. M., Ferrari, E., Schwartz, J., Rozhon, E. J., Linn, C. C., Girijavallabhan, V., and O’Connell, J. F., Antipicornavirus activity of SCH 47802 and analogs: in vitro and in vivo studies. Antiviral. Res., 32, 71–79 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Graham, G., Porter, H. D., and Weissberger, A., Synthesis and acylation of pyrazolines derived from hydrazine and methyl hydrazine. J. Am. Chem. Soc., 71, 983 (1949).

    Article  CAS  Google Scholar 

  • Heibron, I., Dictionary of Organic Compounds, 4th ed. Oxford University press, New York, p. 1374, (1965).

    Google Scholar 

  • Hoemann, M. Z., Xie, R. L., Rossi, R. F., Meyer, S., Sidhu, A., Cuny, G. D., and Hauske, J. R., Potent in vitro methicillinresistant Staphylococcus aureus activity of 2-(1H-indol-3-yl)tetrahydroquinoline derivatives. Bioorg. Med. Chem. Lett., 12, 129–132 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Hussein, M. A., Kafafy, A. H., Abdel-Moty, S. G., and Abou-Ghadir, O. M., Synthesis and biological activities of new substituted thiazoline-quinoline derivatives. Acta Pharm., 59, 365–382 (2009).

    Article  PubMed  CAS  Google Scholar 

  • Jia, W., Liu, Y., Li, W., Liu, Y., Zhang, D., Zhang, P., and Gong, P., Synthesis and in vitro anti-hepatitis B virus activity of 6H-[1]benzothiopyrano[4,3-b]quinolin-9-ols. Bioorg. Med. Chem., 17, 4569–4574 (2009).

    Article  PubMed  CAS  Google Scholar 

  • Kouznetsov, V. V., Vargas Mendez, L. Y., Milena Leal, S., Mora Cruz, U., Andres Coronado, C., Melendez Gomez, C. M., Romero Bohorquez, A. R., and Escobar Rivero, P., Targetoriented synthesis of antiparasitic 2-hetaryl substituted quinolines based on imino Diels-Alder reactions. Lett. Drug Des. Discov., 4, 293–296 (2007).

    Article  CAS  Google Scholar 

  • Lilienkampf, A., Mao, J., Wan, B., Wang, Y., Franzblau, S. G., and Kozikowski, A. P., Structure-activity relationships for a series of quinoline-based compounds active against replicating and nonreplicating Mycobacterium tuberculo-sis. J. Med. Chem., 52, 2109–2118 (2009).

    Article  PubMed  CAS  Google Scholar 

  • Meléndez Gómez, C. M., Kouznetsov, V. V., Sortino, M. A., Alvarez, S. L., and Zacchino, S. A., In vitro antifungal activity of polyfunctionalized 2-(hetero)arylquinolines prepared through imino Diels-Alder reactions. Bioorg. Med. Chem., 16, 7908–7920 (2008).

    Article  PubMed  Google Scholar 

  • Meyyanathan, S. N., Murali, K. E., Chandrashekhar, H. R., Godavarthi, A., Dhanaraj, S. A., Vijayan, P., and Suresh, B., Synthesis of some amino acids incorporated 4(3H)-quinazolinones as possible antiherpes viral agents. Ind. Drugs, 43, 497–502 (2006).

    Google Scholar 

  • Mosmann, T., Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods., 65, 55–63 (1983).

    Article  PubMed  CAS  Google Scholar 

  • Reed, L. J. and Muench, H., A simple method of estimating 50 percent endpoint. Am. J. Hyg., 27, 493–497 (1938).

    Google Scholar 

  • Takatsy, G. X., The use of spiral loops in serological and virological method. Acta Microbial. Hung., 3, 191–194 (1956).

    Google Scholar 

  • Vargas, M. L. Y., Castelli, M. V., Kouznetsov, V. V., Urbina, G. J. M., López, S. N., Sortino, M., Enriz, R. D., Ribas, J. C., and Zacchino, S., In vitro antifungal activity of new series of homoallylamines and related compounds with inhibitory properties of the synthesis of fungal cell wall polymers. Bioorg. Med. Chem., 11, 1531–1550 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Howaida I. Abd-Alla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kassem, E.M., El-Sawy, E.R., Abd-Alla, H.I. et al. Synthesis, antimicrobial, and antiviral activities of some new 5-sulphonamido-8-hydroxyquinoline derivatives. Arch. Pharm. Res. 35, 955–964 (2012). https://doi.org/10.1007/s12272-012-0602-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-012-0602-0

Key words

Navigation