Skip to main content
Log in

Microdosing studies using accelerated mass spectrometry as exploratory investigational new drug trials

  • Review
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Innovative attempts have been made to overcome nonproductivity and high expenditure in the clinical stages of new drug development. Microdosing studies using subpharmacological doses provide early insight into the body’s disposition toward candidate compounds, and are innovative exploratory trials that can promote productivity in drug development. Highly sensitive analytical technology is crucial in microdosing studies that employ qualitative and quantitative assays of target materials in humans. Accelerator mass spectrometry (AMS) has facilitated the adoption of a human microdosing study in the early phase of clinical drug development. Results derived from AMS microdosing studies using labeled compounds can provide various types of information for candidate selection, including pharmacokinetic characteristics and metabolic profiles of candidate compounds. The applicability of microdosing studies is currently expanding into absolute bioavailability and mass balance studies. Although it remains uncertain whether microdosing adequately predicts the pharmacokinetics of therapeutic doses, further development of microdosing studies using AMS may benefit the field of new drug development and could pose a new challenge to researchers. The use of advanced technology in candidate selection will contribute to improved productivity and competitiveness in pharmaceutical research and development. The introduction of microdosing studies using AMS in Korea will present a newly applicable method for innovative clinical trials and contribute to development potential in global competition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, S., Knadler, M. P., and Luffer-Atlas, D., Overview of metabolite safety testing from an industry perspective. Bioanalysis, 2, 1249–1261 (2010).

    Article  PubMed  CAS  Google Scholar 

  • Arjomand, A., Accelerator mass spectrometry-enabled studies: current status and future prospects. Bioanalysis, 2, 519–541 (2010).

    Article  PubMed  CAS  Google Scholar 

  • Bauer, M., Wagner, C. C., and Langer, O., Microdosing studies in humans: the role of positron emission tomography. Drugs R D, 9, 73–81 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Brown, K., Dingley, K. H., and Turteltaub, K. W., Accelerator mass spectrometry for biomedical research. Methods Enzymol., 402, 423–443 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Budzikiewicz, H. and Grigsby, R. D., Mass spectrometry and isotopes: a century of research and discussion. Mass Spectrom. Rev., 25, 146–157 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Caskey, C. T., The drug development crisis: efficiency and safety. Annu. Rev. Med., 58, 1–16 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Combes, R. D., Berridge, T., Connelly, J., Eve, M. D., Garner, R. C., Toon, S., and Wilcox, P., Early microdose drug studies in human volunteers can minimise animal testing: Proceedings of a workshop organised by Volunteers in Research and Testing. Eur. J. Pharm. Sci., 19, 1–11 (2003).

    Article  PubMed  CAS  Google Scholar 

  • DiMasi, J. A., Hansen R. W., and Grabowski, H. G., The price of innovation: new estimates of drug development costs. J. Health Econ., 22, 151–185 (2003).

    Article  PubMed  Google Scholar 

  • European Medicines Evaluation Agency, Note for guidance on non-clinical safety studies for the conduct of human clinical trials and marketing authorization for pharmaceuticals. http://www.emea.europa.eu/docs/en_GB/Document_library/Scientific_guideline/2009/09/WC500002720.pdf (2009).

  • EUMAPP, Outcomes from EUMAPP: A study comparing in vitro, in silico, microdose and pharmacological dose pharmacokinetics. http://www.eumapp.com/pdfs/EUMAPP%20 SUMMARY.pdf (2008).

  • Hah, S. S., Henderson, P. T., and Turteltaub, K. W., Recent advances in biomedical applications of accelerator mass spectrometry. J. Biomed. Sci., 16, 54 (2009).

    Article  PubMed  Google Scholar 

  • Kim, S. H., Kelly, P. B., and Clifford, A. J., Biological/biomedical accelerator mass spectrometry targets. 1. optimizing the CO2 reduction step using zinc dust. Anal. Chem., 80, 7651–7660 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Kim, S. H., Kelly, P. B., Ortalan, V., Browning, N. D., and Clifford, A. J., Quality of graphite target for biological/biomedical/environmental applications of 14C-accelerator mass spectrometry. Anal. Chem., 82, 2243–2252 (2010).

    Article  PubMed  CAS  Google Scholar 

  • Kimmelman, J., Ethics at phase 0: clarifying the issues. J. Law Med. Ethics, 35, 727–733 (2007).

    Article  PubMed  Google Scholar 

  • Lappin, G. and Garner, R. C., Big physics, small doses: the use of AMS and PET in human microdosing of development drugs. Nat. Rev. Drug Discov., 2, 233–240 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Lappin, G. and Garner, R. C., The use of accelerator mass spectrometry to obtain early human ADME/PK data. Expert Opin. Drug Metab. Toxicol., 1, 23–31 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Lappin, G., Kuhnz, W., Jochemsen, R., Kneer, J., Chaudhary, A., Oosterhuis, B., Drijfhout, W. J., Rowland, M., and Garner, R. C., Use of microdosing to predict pharmacokinetics at the therapeutic dose: experience with 5 drugs. Clin. Pharmacol. Ther., 80, 203–215 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Lappin, G. and Garner, R. C., The utility of microdosing over the past 5 years. Expert Opin. Drug Metab. Toxicol., 4, 1499–1506 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Lappin, G., Shishikura, Y., Jochemsen, R., Weaver, R. J., Gesson, C., Brian Houston, J., Oosterhuis, B., Bjerrum, O. J., Grynkiewicz, G., Alder, J., Rowland, M., and Garner, C., Comparative pharmacokinetics between a microdose and therapeutic dose for clarithromycin, sumatriptan, propafenone, paracetamol (acetaminophen), and phenobarbital in human volunteers. Eur. J. Pharm. Sci., 43, 141–150 (2011).

    Article  PubMed  CAS  Google Scholar 

  • Lewis, L. D., Early human studies of investigational agents: dose or microdose? Br. J. Clin. Pharmacol., 67, 277–279 (2009).

    Article  PubMed  Google Scholar 

  • Liberman, R. G., Tannenbaum, S. R., Hughey, B. J., Shefer, R. E., Klinkowstein, R. E., Prakash, C., Harriman, S. P., and Skipper, P. L., An interface for direct analysis of 14C in nonvolatile samples by accelerator mass spectrometry. Anal. Chem., 76, 328–334 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Madan, A., O’Brien, Z., Wen, J., O’Brien, C., Farber, R. H., Beaton, G., Crowe, P., Oosterhuis, B., Garner, R. C., Lappin, G., and Bozigian, H. P., A pharmacokinetic evaluation of five H(1) antagonists after an oral and intravenous microdose to human subjects. Br. J. Clin. Pharmacol., 67, 288–298 (2009).

    Article  PubMed  CAS  Google Scholar 

  • Marchetti, S. and Schellens, J. H., The impact of FDA and EMEA guidelines on drug development in relation to Phase 0 trials. Br. J. Cancer, 97, 577–581 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Mayr, L. M. and Bojanic, D., Novel trends in high-throughput screening. Curr. Opin. Pharmacol., 9, 580–588 (2009).

    Article  PubMed  CAS  Google Scholar 

  • Miyaji, Y., Ishizuka, T., Kawai, K., Hamabe, Y., Miyaoka, T., Oh-hara, T., Ikeda, T., and Kurihara, A., Use of an intravenous microdose of 14C-labeled drug and accelerator mass spectrometry to measure absolute oral bioavailability in dogs; cross-comparison of assay methods by accelerator mass spectrometry and liquid chromatographytandem mass spectrometry. Drug Metab. Pharmacokinet., 24, 130–138 (2009).

    Article  PubMed  CAS  Google Scholar 

  • Mucke, H. A. M., Microdosing in translational medicine: pros and cons. CHI Insight Pharma Reports, 2006

  • Robinson, W. T., Innovative early development regulatory approaches: expIND, expCTA, microdosing. Clin. Pharmacol. Ther., 83, 358–360 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Salehpour, M., Forsgard, N., and Possnert, G., FemtoMolar measurements using accelerator mass spectrometry. Rapid Commun. Mass Spectrom., 23, 557–563 (2009).

    Article  PubMed  CAS  Google Scholar 

  • Salehpour, M., Ekblom, J., Sabetsky, V., Håkansson, K., and Possnert, G., Accelerator mass spectrometry offers new opportunities for microdosing of peptide and protein pharmaceuticals. Rapid Commun. Mass Spectrom., 24, 1481–1489 (2010).

    Article  PubMed  CAS  Google Scholar 

  • Sarapa, N., Hsyu, P. H., Lappin, G., and Garner, R. C., The application of accelerator mass spectrometry to absolute bioavailability studies in humans: simultaneous administration of an intravenous microdose of 14C-nelfinavir mesylate solution and oral nelfinavir to healthy volunteers. J. Clin. Pharmacol., 45, 1198–1205 (2005).

    Article  PubMed  CAS  Google Scholar 

  • US FDA, Innovation or Stagnation: Challenge and Opportunity on the Critical Path to New Medical Products. http://www.fda.gov/ScienceResearch/SpecialTopics/CriticalPathInitiative/CriticalPathOpportunitiesReports/ucm077262.htm (2004).

  • US FDA, Investigators, and Reviewers Exploratory IND Studies. http://www.fda.gov/ohrms/dockets/98fr/05d-0122-gdl0002.pdf (2006).

  • US FDA, Guidance for Industry Safety Testing of Drug Metabolites. http://www.fda.gov/OHRMS/DOCKETS/98fr/FDA-2008-D-0065-GDL.pdf (2008).

  • Vogel, J. S., Turteltaub, K. W., Finkel, R., and Nelson, D. E., Accelerator mass spectrometry. Anal. Chem., 67, 353A–359A (1995).

    Article  PubMed  CAS  Google Scholar 

  • Vuong, le T., Ruckle, J. L., Blood, A. B., Reid, M. J., Wasnich, R. D., Synal, H. A., and Dueker, S. R., Use of accelerator mass spectrometry to measure the pharmacokinetics and peripheral blood mononuclear cell concentrations of zidovudine. J. Pharm. Sci., 97, 2833–2843 (2008).

    Article  CAS  Google Scholar 

  • Wilding, I. R. and Bell, J. A., Improved early clinical development through human microdosing studies. Drug Discov. Today, 10, 890–894 (2005).

    Article  PubMed  Google Scholar 

  • Yamane, N., Tozuka, Z., Sugiyama, Y., Tanimoto, T., Yamazaki, A., and Kumagai, Y., Microdose clinical trial: quantitative determination of fexofenadine in human plasma using liquid chromatography/electrospray ionization tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 858, 118–128 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Young, G., Ellis, W., Ayrton, J., Hussey, E., and Adamkiewicz, B., Accelerator mass spectrometry (AMS): recent experience of its use in a clinical study and the potential future of the technique. Xenobiotica, 31, 619–632 (2001).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Soo Kyung Bae or Ji-Hong Shon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bae, S.K., Shon, JH. Microdosing studies using accelerated mass spectrometry as exploratory investigational new drug trials. Arch. Pharm. Res. 34, 1789–1798 (2011). https://doi.org/10.1007/s12272-011-1102-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-011-1102-3

Key words

Navigation