Skip to main content

Liquid Chromatography–Mass Spectrometry Assays in the Regulated Bioanalytical Laboratory

  • Chapter
  • First Online:
Regulated Bioanalysis: Fundamentals and Practice

Part of the book series: AAPS Advances in the Pharmaceutical Sciences Series ((AAPS,volume 26))

  • 1199 Accesses

Abstract

Data derived from robust and reproducible bioanalytical assays form the foundation of all pharmaceutical marketing approval submissions to regulatory agencies. In this chapter, bioanalytical method development, validation, and sample analysis for small molecules are discussed with emphasis on high performance liquid chromatography–mass spectrometry/mass spectrometry (LC–MS/MS) assays. Considerations for assay development include selection of analyte extraction, chromatography, and mass spectrometry parameters. Relevant aspects of validation testing and documentation are covered. Sample analysis for both good laboratory practice (animal, nonclinical) and good clinical practice (human, clinical) studies is discussed. Regulatory compliance issues are addressed for assay development, validation, and sample analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shah VP, Midha KK, Dighe SV, et al. Analytical methods validation: bioavailability, bioequivalence and pharmacokinetic studies. Pharm Res. 1992;9:588–92.

    Article  Google Scholar 

  2. Shah VP. The history of bioanalytical method validation and regulation: evolution of a guidance document on bioanalytical methods validation. AAPS J. 2007;9(1):E43–7.

    Article  CAS  PubMed Central  Google Scholar 

  3. Timmerman P, Arnold M, DeSilva B, Garofolo F, Golob M, van Amsterdam P, et al. Introduction to the proposals from the Global Bioanalysis Consortium Harmonization Team. AAPS J. 2014;16:1159–61. doi:10.1208/s12248-014-9609-4.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Timmerman P, White S, McDougall S, Kall MA, Smeraglia J, Fjording MS, et al. Tiered approach into practice: scientific validation for chromatography-based assays in early development-a recommendation from the European Bioanalysis Forum. Bioanalysis. 2015;7:2387–98.

    Article  CAS  Google Scholar 

  5. Lowes S, Hucker R, Jemal M, Marini JC, Rezende VM, Shoup R, et al. Tiered approaches to chromatographic bioanalytical method performance evaluation: recommendation for best practices and harmonization from the Global Bioanalysis Consortium Harmonization Team. AAPS J. 2015;17:17–23. doi:10.1208/s12248-014-9656-x.

    Article  CAS  PubMed  Google Scholar 

  6. US Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER), Center for Veterinary Medicine (CVM), Guidance for industry, bioanalytical method validation. Rockville, MD, USA. May 2001.

    Google Scholar 

  7. Ji AJ, Jiang Z, Livson Y, Davis JA, Chu JX, Weng N. Challenges in urine bioanalytical assays: overcoming nonspecific binding. Bioanalysis. 2010;2:1573–86.

    Article  CAS  PubMed  Google Scholar 

  8. Meng M, Wang L, Voelker T, Reuschel S, Van Horne KC, Bennett PK. A systematic approach for developing a robust LC-MS/MS method for bioanalysis. Bioanalysis. 2013;5:91–115.

    Article  CAS  PubMed  Google Scholar 

  9. Rodila R, Kim GE, Fan L, Chang MS, Zhang J, Wu H, et al. HPLC-MS/MS determination of a hardly soluble drug in human urine through drug-albumin binding assisted dissolution. J Chromatogr B. 2008;872:128–32.

    Article  CAS  Google Scholar 

  10. Suva MA. A brief review on dried blood spots applications in drug development. J Pharm BioSci. 2014;1:17–23.

    Google Scholar 

  11. Bylda C, Thiele R, Kobold U, Volmer DA. Recent advances in sample preparation techniques to overcome difficulties encountered during quantitative analysis of small molecules from biofluids using LC-MS/MS. Analyst. 2014;139:2265–76.

    Article  CAS  PubMed  Google Scholar 

  12. Mei H, Hsieh Y, Nardo C, Xu X, Wang S, Ng K, Korfmacher WA. Investigation of matrix effects in bioanalytical high-performance liquid chromatography/tandem mass spectrometric assays: application to drug discovery. Rapid Commun Mass Spectrom. 2003;17:97–103. doi:10.1002/rcm.876.

    Article  CAS  PubMed  Google Scholar 

  13. Shou WZ, Weng N. Simple means to alleviate sensitivity loss by trifluoroacetic acid (TFA) mobile phases in the hydrophilic interaction chromatography-electrospray tandem mass spectrometric (HILIC-ESI/MS/MS) bioanalysis of basic compounds. J Chromatogr B. 2005;825:186–92.

    Article  CAS  Google Scholar 

  14. Hughes NC, Wong EY, Fan J, Bajaj N. Determination of carryover and contamination for mass spectrometry-based chromatographic assays. AAPS J. 2007;9:E353–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chen S, Zhang J, Liao D, Qian MG. A novel dynamic flush method to reduce column-related carryover. J Chromatogr Sci. 2014;52:950–3. doi:10.1093/chromsci/bmt111.

    Article  CAS  PubMed  Google Scholar 

  16. Meng M, Tan L, Volker T, Adler R, Carter S, Bennett PK. Overcome non-phospholipid related matrix effect and continuing improvement for a LC/MS/MS assay for the quantification of naltrexone and 6 β-naltrexol in human plasma. Seattle, Washington: AAPS Annual Meeting and Exposition. 2009; Poster T2095.

    Google Scholar 

  17. Tan A, Hussain S, Musuku A, Massé R. Internal standard response variations during incurred sample analysis by LC-MS/MS: case by case trouble shooting. J Chromatogr B. 2009;877:3201–9.

    Article  CAS  Google Scholar 

  18. King R, Bonfiglio R, Fernandez-Metzler C, Miller-Stein C, Olah T. Mechanistic investigation of ionization suppression in electrospray ionization. J Am Soc Mass Spectrom. 2000;11:942–50.

    Article  CAS  PubMed  Google Scholar 

  19. Bennett PK, Van Horne KC. Identification of the major endogenous and persistent compounds in plasma, serum, and tissue that cause matrix effects with electrospray LC/MS techniques. Salt Lake City, Utah: AAPS Annual Meeting and Exposition. 2003; Poster R6006.

    Google Scholar 

  20. Booth B. When do you need a validated assay? Bioanalysis. 2011;3:2729–30. doi:10.4155/bio.11.250.

    Article  CAS  PubMed  Google Scholar 

  21. European Medicines Agency, Committee for Medicinal Products for Human Use. Guideline on bioanalytical method validation. EMEA/CHMP/EWP/192217/2009. London, UK. 2011.

    Google Scholar 

  22. Organisation for Economic Cooperation and Development. Environment Directorate. OECD series on principles of good laboratory practice and compliance monitoring. OECD principles on good laboratory practice. ENV/MC/CHEM(98) 17. Paris, France. 1998.

    Google Scholar 

  23. European Medicines Agency, Committee For Medicinal Products for Human Use. Guideline on the investigation of bioequivalence. CPMP/EWP/QWP/1401/98 Rev. 1/ Corr **. London, UK. 2010.

    Google Scholar 

  24. Meng M, Carter S, Bennett PK. LC-MS bioanalysis of drugs in hemolyzed and lipemic samples. In: Li W, Zhang J, Tse FLS, editors. Handbook of LC-MS bioanalysis. Best practices, experimental protocols and regulation. Hoboken, NJ: Wiley. 2013. pp. 369–377.

    Google Scholar 

  25. Ingelse B, Barroso B, Gray N, Jakob-Rodamer V, Kingsley C, Sykora C, et al. European Bioanalysis Forum: recommendation on dealing with hemolyzed and hyperlipidemic matrices. Bioanalysis. 2014;6:3113–20. doi:10.4155/bio.14.252.

    Article  CAS  PubMed  Google Scholar 

  26. Tang D, Thomas E. Strategies for dealing with hemolyzed samples in regulated LC-MS/MS bioanalysis. Bioanalysis. 2012;4:2715–24. doi:10.4155/bio.12.229.

    Article  CAS  PubMed  Google Scholar 

  27. Bérubé ER, Taillon MP, Furtado M, Garofolo F. Impact of sample hemolysis on drug stability in regulated bioanalysis. Bioanalysis. 2011;3:2097–105. doi:10.4155/bio.11.190.

    Article  PubMed  Google Scholar 

  28. Li F, Ewles M, Pelzer M, Brus T, Ledvina A, Gray N, et al. Case studies: the impact of nonanalyte components on LC-MS/MS-based bioanalysis: strategies for identifying and overcoming matrix effects. Bioanalysis. 2013;5:2409–41. doi:10.4155/bio.13.201.

    Article  CAS  PubMed  Google Scholar 

  29. Li W, Zhang J, Tse FL. Strategies in quantitative LC-MS/MS analysis of unstable small molecules in biological matrices. Biomed Chromatogr. 2011;25:258–77. doi:10.1002/bmc.1572.

    Article  PubMed  Google Scholar 

  30. Lowes S, Jersey J, Shoup R, Garofolo F, Savoie N, Mortz E, et al. Recommendations on: internal standard criteria, stability, incurred sample reanalysis and recent 483s by the Global CRO Council for Bioanalysis. Bioanalysis. 2011;3:1323–32. doi:10.4155/bio.11.135.

    Article  CAS  PubMed  Google Scholar 

  31. Freisleben A, Brudny-Klöppel M, Mulder H, de Vries R, de Zwart M, Timmerman P. Blood stability testing: European Bioanalysis Forum view on current challenges for regulated bioanalysis. Bioanalysis. 2011;3:1333–6. doi:10.4155/bio.11.121.

    Article  CAS  PubMed  Google Scholar 

  32. Timmerman P, White S, Globig S, Lüdtke S, Brunet L, Smeraglia J. EBF recommendation on the validation of bioanalytical methods for dried blood spots. Bioanalysis. 2011;3:1567–75. doi:10.4155/bio.11.132.

    Article  CAS  PubMed  Google Scholar 

  33. Musteata FM. Pharmacokinetic applications of microdevices and microsampling techniques. Bioanalysis. 2009;1:171–85. doi:10.4155/bio.09.18.

    Article  CAS  PubMed  Google Scholar 

  34. Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther. 2001;69:89–95.

    Article  Google Scholar 

  35. US Department of Health and Human Services, US FDA, Center for Drug Evaluation and Research, Center for Veterinary Medicine. Draft guidance: Guidance for industry, bioanalytical method validation, Rockville, MD, USA. 2013. http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM368107.pdf.

  36. Xue YJ, Gao H, Ji QC, Lam Z, Fang X, Lin ZJ, et al. Bioanalysis of drug in tissue: current status and challenges. Bioanalysis. 2012;4:2637–53. doi:10.4155/bio.12.252.

    Article  CAS  PubMed  Google Scholar 

  37. European Medicines Agency, GCP Inspectors Working Group. Reflection paper for laboratories that perform the analysis or evaluation of clinical trial samples. London, UK. 2012.

    Google Scholar 

  38. International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH). Guideline for good clinical practice E6(R1). Geneva, Switzerland. 1996.

    Google Scholar 

  39. Medicines and Healthcare products Regulatory Agency (MHRA). Guidance on the maintenance of regulatory compliance in laboratories that perform the analysis or evaluation of clinical trial samples. Issue 1. London, UK. 2009. http://webarchive.nationalarchives.gov.uk/20141205150130/, http://www.mhra.gov.uk/Howweregulate/Medicines/Inspectionandstandards/GoodClinicalPracticeforClinicalLaboratories/index.htm.

  40. Medicines and Healthcare products Regulatory Agency (MHRA). Guidance for the notification of serious breaches of GCP or the trial protocol. London, UK. 2014. https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/404588/GCP_serious_breaches_guide.pdf.

  41. Medicines and Healthcare products Regulatory Agency (MHRA). Guidance document on archiving. London, UK. 2006. http://webarchive.nationalarchives.gov.uk/20080814090145/, http://mhra.gov.uk/home/idcplg?IdcService=GET_FILE&dDocName=CON2024521&RevisionSelectionMethod=Latest.

  42. Fast DM, Kelley M, Viswanathan CT, O’Shaughnessy J, King SP, Chaudhary A, et al. Workshop report and follow-up—AAPS Workshop on current topics in GLP Bioanalysis: assay reproducibility for incurred samples—implications of Crystal City recommendations. AAPS J. 2009;11:238–41. doi:10.1208/s12248-009-9100-9.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephanie S. Cape .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Cape, S.S., Meng, M., Koupaei-Abyazani, M.R., Fast, D.M. (2017). Liquid Chromatography–Mass Spectrometry Assays in the Regulated Bioanalytical Laboratory. In: Rocci Jr., M., Lowes, S. (eds) Regulated Bioanalysis: Fundamentals and Practice. AAPS Advances in the Pharmaceutical Sciences Series, vol 26. Springer, Cham. https://doi.org/10.1007/978-3-319-54802-9_7

Download citation

Publish with us

Policies and ethics