Skip to main content
Log in

Combination immunotherapy of MAb B6.1 with fluconazole augments therapeutic effect to disseminated candidiasis

  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

We recently reported that IgM MAb B6.1, specific for β-1, 2-mannotriose on the cell wall of Candida albicans, is therapeutic to disseminated candidiasis due to C. albicans. In the current study, we examined if MAbB6.1 enhances therapeutic effect of fluconazole (FLC) to the disseminated disease. To assess the combination effect, determination by the kidneys-colony forming unit and survival times were used. Results showed that the therapeutic effect of FLC on mice with disseminated candidiasis was dose-dependent, but a FLC dose at 0.8 mg/kg body weight of mice was ineffective. To determine combination effect, mice treated intraperitoneally with a combination of FLC plus MAb B6.1 at 1 h post-infection — a condition of developing partial therapeutic activity — enhanced survival times beyond the effect by only antibody (p < 0.05). The resulting MST (mean survival times) value from the combinationreceived mice was almost the same as MST value from 3.2 mg FLC dose-given animals (p < 0.05). Another combination of 1.6 mg FLC dose and B6.1 reduced severity of the disseminated disease at almost the same rate as combination efficacy of 0.8 mg FLC dose plus B6.1. This data indicates that B6.1 acts in concert with FLC and that this combination therapy augments protection, which suggests a possibility of reducing FLC dose. The augmentation response was specific because an irrelevant IgM MAb S9 was not effective to the disseminated disease. Thus, our present studies demonstrate that this combination immunotherapy may be a way of solving the problem of limited antifungal drug choices caused by drug-resistant C. albicans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antachopoulos, C., Walsh, T. J., and Roilides, E., Fungal infections in primary immunodeficiencies. Eur. J. Pediatr., 166, 1099–1117 (2007).

    Article  PubMed  Google Scholar 

  • Bodey, G. P., The emergence of fungi as major hospital pathogens. J. Hosp. Infect., 11Suppl A, 411–426 (1988).

    Article  PubMed  Google Scholar 

  • Brawner, D. L. and Cutler, J. E., Ultrastructural and biochemical studies of two dynamically expressed cell surface determinants on Candid albicans. Infect. Immun., 51, 327–336 (1986).

    PubMed  CAS  Google Scholar 

  • Caesar-TonThat, T. C. and Cutler, J. E., A monoclonal antibody to Candida albicans enhances mouse neutrophil candidacidal activity. Infect. Immun., 65, 5354–5357 (1997).

    PubMed  CAS  Google Scholar 

  • Dixon, T. C., Steinbach, W. J., Benjamin, D. K. Jr., Williams, L. W., and Myers, L. A., Disseminated Candida tropicalis in a patient with chronic mucocutaneous candidiasis. South Med. J., 97, 788–790 (2004).

    Article  PubMed  Google Scholar 

  • Edwards, J. E., Invasive Candida infections: evolution of a fungal pathogen. N. Engl. J. Med., 324, 1060–1072 (1991).

    Article  PubMed  Google Scholar 

  • Edwards, J. E., Bodey, G. P., Boeden, R. A., Buchner, T., DePauw, B. E., Filler, S. G., Ghannoum, M. A., Glauser, M., Herbrecht, R., Kauffman, C. A., Kohno, S., Martino, P., Meunier, F., Mori, T., Pfaller, M. A., Rex, J. H., Rogers, T. R., Rubin, R. H., Solomkin, J., Viscoli, C., Walsh, T. J., and White, M., International conference for the development of a consensus on the management and prevention of severe candidalinfections. Clin. Infect. Dis., 25, 43–59 (1997).

    Article  PubMed  Google Scholar 

  • Epstein, J. B. and Polsky, B., Oropharyngeal candidiasis: a review of its clinical spectrum and current therapies. Clin. Ther., 20, 40–57 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Filler, S. G. and Edwards, J. E., When and how to treat serious candidial infections: concepts and controversies. Curr. Clin. Top. Infect. Dis., 15, 1–18 (1995).

    PubMed  CAS  Google Scholar 

  • Fisher-Hoch, S. P. and Hutwagner, L., Opportunisticcandidiasis: an epidemic of the 1980s. Clin. Infect. Dis., 21, 897–904 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Fonos, V. and Cataldi, L., Amphotericin B-induced nephrotoxicity: a Review. J. Chemother., 12, 463–470 (2000).

    Google Scholar 

  • Graybill, J. R., Editorial response: can we agree on the treatment of candidiasis? Clin. Infect. Dis., 25, 60–62 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Gupta, A. K., Sauder, D. N., and Shear, N. H., Antifungal agents: an overview. Part II. Am. Acad. Dermatol., 30, 911–933 (1994).

    Article  CAS  Google Scholar 

  • Gupta, A. K., Katz, H. I., and Shear, N. H., Drug interactions with itraconazole, fluconazole, and terbinafine and their management. J. Am. Acad. Dermatol., 41, 237–249 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Han, Y. and Cutler, J. E., Antibody response that protects against disseminated candidasis. Infect. Immun., 63, 2714–2719 (1995).

    PubMed  CAS  Google Scholar 

  • Han, Y. and Cutler, J. E., Assessment of a mouse model of neutropenia and the effect of an anti-candidiasis monoclonal antibody in these animals. J. Infect. Dis., 15, 1169–1175 (1997).

    Article  Google Scholar 

  • Han, Y., Kanbe, T., Cherniak, R., and Cutler, J. E., Biochemical characterization of Candida albicans epitopes that can elicit protective and nonprotective antibodies. Infect. Immun., 65, 4100–4107 (1997).

    PubMed  CAS  Google Scholar 

  • Han, Y., Morrison, R. P., and Cutler, J. E., A vaccine and monoclonal antibodies that Enhance mouse resistance to Candida albicans vaginal infection. Infect. Immun., 66, 5771–5776 (1998).

    PubMed  CAS  Google Scholar 

  • Han, Y., Riesselman, M., and Cutler, J. E., Protection against candidiasis by an immunoglobulin G3 (IgG3) monoclonal antibody specific for the same mannotriose as an IgM protective antibody. Infect. Immun., 68, 1649–1654 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Han, Y., Kozel, T. R., Zhang, M. X., MacGill, R. S., Carroll, M. C., and Cutler, J. E., Complement is essential for protection by an IgM and an IgG3 monoclonal antibody against experimental, hematogenously disseminated candidiasis. J. Immunol., 67, 1550–1557 (2001).

    Google Scholar 

  • Han, Y. and Lee, J. H., Berberine synergy with amphotericin B against disseminated candidiasis in mice. Biol. Pharm. Bull., 28, 541–544 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Han, Y., Synergic anticandidal effect of epigallocatechin-Ogallate combined with amphotericin B in a murine model of disseminated candidiasis and its anticandidal mechanism. Biol. Pharm. Bull., 30, 1693–1696 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Han, Y., Efficacy of combination immunotherapy of IgM MAb B6.1 and amphotericin B against disseminated candidiasis. Int. Immunopharmacol., 10, 1526–1531 (2010).

    Article  PubMed  CAS  Google Scholar 

  • Jin, J., Guo, N., Zhang, J., Ding, Y., Tang, X., Liang, J., Li, L., Deng, X., and Yu, L., The synergy of honokiol and fluconazole against clinical isolates of azole-resistant Candida albicans. Lett. Appl. Microbiol., 51, 351–357 (2010).

    Article  PubMed  CAS  Google Scholar 

  • Kofla, G., Turner, V., Schulz, B., Storch, U., Froelich, D., Rognon, B., Coste, A. T., Sanglard, D., and Ruhnke, M., Doxorubicin induces drug efflux pumps in Candida albicans. Med. Mycol., 49, 132–142 (2011).

    Article  PubMed  CAS  Google Scholar 

  • MacNeill, C., Weisz, J., and Carey, J. C., Clinical resistance of recurrent Candida albicans vulvovaginitis to fluconazole in the presence and absence of in vitro resistance. J. Reprod. Med., 48, 63–68 (2003).

    PubMed  CAS  Google Scholar 

  • Masia Canuto, M. and Gutierrez Rodero, F., Antifungal drug resistance to azoles and polyenes. Lancet Infect. Dis., 2, 550–563 (2002).

    Article  PubMed  Google Scholar 

  • Mayer, J., Doubek, M., Doubek, J., Horky, D., Scheer, P., and Stepanek, M., Reduced nephrotoxicity of conventional amphotericin B therapy after minimal nephroprotective measures: animal experiments and clinical study. J. Infect. Dis., 186, 379–388 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Pincus, S. H., Cole, R. L., Kamanga-Sollo, E., and Fischer, S. H., Interaction of group B steptococcal opacity variants with the host defense system. Infect. Immun., 61, 3761–3768 (1993).

    PubMed  CAS  Google Scholar 

  • Rex, J. H., Walsh, T. J., and Anaissie, E. J., Fungal infections in iatrogenically compromised hosts. Adv. Intern. Med., 43, 321–371 (1998).

    PubMed  CAS  Google Scholar 

  • Sanglard, D., Clinical relevance of mechanism of antifungal drug resistance in yeasts. Enferm. Infecc. Microbiol. Clin., 20, 462–469 (2002).

    PubMed  Google Scholar 

  • Schaberg, D. R., Culver, D. H., and Gayner, R. P., Major trends in the microbial etiological nosocomial infection. Am. J. Med., 16, 72–75 (1991).

    Article  Google Scholar 

  • Sieck, T. G., Moors, M. A., Buckley, H. R., and Blank, K. J., Protection against murine disseminated candidiasis mediated by a Candida albicans-specific T-cell line. Infect. Immun., 61, 3540–3543 (1993).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongmoon Han.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, JH., Jang, EC. & Han, Y. Combination immunotherapy of MAb B6.1 with fluconazole augments therapeutic effect to disseminated candidiasis. Arch. Pharm. Res. 34, 399–405 (2011). https://doi.org/10.1007/s12272-011-0307-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-011-0307-9

Key words

Navigation