Skip to main content
Log in

The combination of mixed lactic acid bacteria and dietary fiber lowers serum cholesterol levels and fecal harmful enzyme activities in rats

  • Drug Discovery and Development
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Probiotics such as lactic acid bacteria (LAB) and prebiotics such as fiber are generally considered beneficial for health. These affect the microflora composition and fermentation metabolites and consequently contribute to local and systemic effects in humans. The beneficial effects of probiotics can be improved when combined with prebiotics. Here we investigated the effects of a mixed LAB supplement combined with dietary fiber on the population of LAB in the gut, as well as on serum cholesterol levels, fecal water content and microbial harmful enzyme activities. For animal studies, 0.2 mL of mixed LAB (Bifidobacterium longum SPM1205, Lactobacillus acidophilus, and SAFELAC isolated from Pediococcus pentosaceus) supplement (107 ∼ 108 colony forming units per day) was orally administered to male Sprague-Dawley rats every day for 2 weeks along with a diet containing 5% or 10% cellulose. The mixed LAB supplement combined with dietary cellulose significantly (p < 0.05) reduced serum total cholesterol and LDL levels. This combination also significantly (p < 0.05) increased the population of LAB and the fecal water content and significantly (p < 0.05) reduced microbial harmful enzyme (β-glucosidase, β-glucuronidase and tryptophanase) activities. These effects of LAB were particularly improved by its combination with 5% cellulose compared to the control (a diet without cellulose), and the 5% cellulose combination was more effective than the 10% cellulose combination. In conclusion, the incorporation of a fibrous diet such as cellulose with lactic acid bacteria improved the population of LAB, and daily consumption of this combination could reduce the serum cholesterol levels and activities of harmful enzymes such as β-glucosidase, β-glucuronidase, tryptophanase, urease in rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bengmark, S., Immunonutrition: role of biosurfactants, fiber, and probiotic bacteria. Nutrition, 14, 585–594 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Blaut, M., Relationship of prebiotics and food to intestinal microflora. Eur. J. Nutr., 41, I11–I16 (2002).

    Article  PubMed  Google Scholar 

  • Bolognani, F., Rumney, C. J., Pool-Zobel, B. L., and Rowland, I. R., Effect of lactobacilli, bifidobacteria and inulin on the formation of aberrant crypt foci in rats. Eur. J. Nutr., 40, 293–300 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Choi, S. S., Kang, B. Y., Chung, M. J., Kim, S. D., Park, S. H., Kim, J. S., Kang, C. Y., and Ha, N. J., Safety assessment of potential lactic acid bacteria Bifidobacterium longum SPM1205 isolated from healthy Koreans. J. Microbiol., 43, 493–498 (2005).

    PubMed  CAS  Google Scholar 

  • Collins, M. D. and Gibson, G. R., Probiotics, prebiotics, and synbiotics: approaches for modulating the microbial ecology of the gut. Am. J. Clin. Nutr., 69, 1052S–1057S (1999).

    PubMed  CAS  Google Scholar 

  • Donohue, D. C., Safety of probiotics. Asia Pac. J. Clin. Nutr., 15, 563–569 (2006).

    PubMed  CAS  Google Scholar 

  • Femia, A. P., Luceri, C., Dolara, P., Giannini, A., Biggeri, A., Salvadori, M., Clune, Y., Collins, K. J., Paglierani, M., and Caderni, G., Antitumorigenic activity of the prebiotic inulin enriched with oligofructose in combination with the probiotics Lactobacillus rhamnosus and Bifidobacterium lactis on azoxymethane-induced colon carcinogenesis in rats. Carcinogenesis, 23, 1953–1960 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Fernandes, C. F. and Shahani, K. M., Anticarcinogenic and immunological properties of dietary lactobacilli. J. Food Prot., 53, 704–710 (1990).

    Google Scholar 

  • Fooks, L. J., Fuller, R., and Gibson, G. R., Prebiotics, probiotics and human gut microbiology. Int. Dairy J., 9, 53–61 (1999).

    Article  Google Scholar 

  • Fujimori, S., Gudis, K., Mitsui, K., Seo, T., Yonezawa, M., Tanaka, S., Tatsuguchi, A., and Sakamoto C., A randomized controlled trial on the efficacy of symbiotic versus probiotic or prebiotic treatment to improve the quality of life in patients with ulcerative colitis. Nutrition, 25, 520–525 (2009).

    Article  PubMed  Google Scholar 

  • Fuller, R., Probiotics in man and animals. J. Appl. Bacteriol., 66, 365–378 (1989).

    PubMed  CAS  Google Scholar 

  • Fuller, R., History and development of probiotics, In Fuller, R. (Ed.). Probiotics-The Scientific Basis, Champman and Hall, London, UK, pp. 1–18, (1992).

    Google Scholar 

  • Gibson, G. R. and Roberfroid, M. B., Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J. Nutr., 125, 1401–1412 (1995).

    PubMed  CAS  Google Scholar 

  • Gordon, D. T., The importance of total dietary fiber in human nutrition and health. Kor. J. Nutr., 25, 75–76 (1992).

    Google Scholar 

  • Gutmann, I. and Bergmeyer, H. U., Urea, In Methods of enzymatic analysis, Vol. 4, Bergmeyer, H. U. (Ed.), Academic Press, New York, US, pp. 1791–1794, (1974).

    Google Scholar 

  • Holzapfel, W. H. and Schillinger, U., Introduction to preand probiotics. Food Res. Int., 35, 109–116 (2002).

    Article  Google Scholar 

  • Hudault, S., Lievin, V., Bernet-Camard, M. F., and Servin, A. L., Antagonistic activity exerted in vitro and in vivo by Lactobacillus casei (strain GG) against Salmonella typhimurium C5 infection. Appl. Environ. Microbiol., 63, 513–518 (1997).

    PubMed  CAS  Google Scholar 

  • Juskiewicz, J. and Zduńczyk, Z., Effects of cellulose, carboxymethyl-cellulose and inulin fed to rats as single supplements or in combinations on their caecal parameters. Comp. Biochem. Physiol. A Mol. Integr. Physiol., 139, 513–519 (2004).

    Article  PubMed  Google Scholar 

  • Kim, D. H., Kang, H. J., Kim, S. W., and Kobayashi, K., pH-inducible β-glucuronidase and β-glucosidase of intestinal bacteria. Chem. Pharm. Bull., 40, 1967–1969 (1992).

    Google Scholar 

  • Kim, D. H., Lee, J. H., Bae, E. A., and Han, M. J., Induction and inhibition of indole of intestinal bacteria. Arch. Pharm. Res., 18, 351–533 (1995).

    Article  CAS  Google Scholar 

  • Lee, D. K., Jang, S., Kim, M. J., Kim, J. H., Chung, M. J., Kim, K. J., and Ha, N. J., Anti-proliferative effects of Bifidobacterium adolescentis SPM0212 extract on human colon cancer cell lines. BMC Cancer, 8, 310 (2008).

    Article  Google Scholar 

  • Lee, S.-M. and Lee, W.-K., Inhibition effects of Lactic acid bacteria (LAB) on the Azoxymethane-induced colonic preneoplastic lesions. J. Microbiol., 38, 169–175 (2000).

    Google Scholar 

  • Lim, C. C., Ferguson, L. R., and Tannock, G. W., Dietary fibres as “prebiotics”: implications for colorectal cancer. Mol. Nutr. Food Res., 49, 609–619 (2005).

    Article  PubMed  Google Scholar 

  • Lim, H. J., Kim, S. Y., and Lee, W. K., Isolation of cholesterol-lowering lactic acid bacteria from human intestine for probiotic use. J. Vet. Sci., 5, 391–395 (2004).

    PubMed  Google Scholar 

  • Ling, W. H., Hänninen, O., Mykkänen, H., Heikura, M., Salminen, S., and von Wright, A., Colonization and fecal enzyme activities after oral Lactobacillus GG administration in elderly nursing home residents. Ann. Nutr. Metab., 36, 162–166 (1992).

    Article  PubMed  CAS  Google Scholar 

  • Marteau, P., Pochart, P., Flourié, B., Pellier, P., Santos, L., Desjeux, J. F., and Rambaud, J. C., Effect of chronic ingestion of a fermented dairy product containing Lactobacillus acidophilus and Bifidobacterium bifidum on metabolic activities of the colonic microflora. Am. J. Clin. Nutr., 52, 685–688 (1990).

    PubMed  CAS  Google Scholar 

  • Ouwehand, A. C., Kirjavainen, P. V., Shortt, C., and Salminen, S., Probiotics: mechanisms and established effects. Int. Dairy J., 9, 43–52 (1999).

    Article  Google Scholar 

  • Pool-Zobel, B. L., Bertram, B., Knoll, M., Lambertz, R., Neudecker, C., Schillinger, U., Schmezer, P., and Holzapfel, W. H., Antigenotoxic properties of lactic acid bacteria in vivo in the gastrointestinal tract of rats. Nutr. Cancer, 20, 271–281 (1993).

    Article  PubMed  CAS  Google Scholar 

  • Reddy, B. S., Nutritional factors and colon cancer. Crit. Rev. Food Sci. Nutr., 35, 175–190 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Salminen, S., Deighton, M., and Gorbach, S., Lactic acid bacteria in health and disease, In Salminen, S. and von Wright, A. (Eds.), Lactic Acid Bacteria, Marcel Dekker, New York, pp. 199–225, (1993).

    Google Scholar 

  • Salminen, S., Deighton, M. A., Benno, Y., and Gorbach, S., Lactic acid bacteria, microbiology and functional aspects, In Salminen, S. and von Wright, A. (Eds.), Lactic acid bacteria in health and disease, 2nd edition, Marcel Dekker, New York, pp. 211–253 (1998).

    Google Scholar 

  • Sartor, R. B., Therapeutic manipulation of the enteric microflora in inflammatory bowel diseases: antibiotics, probiotics, and prebiotics, Gastroenterology., 126, 1620–1633 (2004).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nam Joo Ha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, D.K., Park, S.Y., Jang, S. et al. The combination of mixed lactic acid bacteria and dietary fiber lowers serum cholesterol levels and fecal harmful enzyme activities in rats. Arch. Pharm. Res. 34, 23–29 (2011). https://doi.org/10.1007/s12272-011-0102-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-011-0102-7

Key words

Navigation