Skip to main content
Log in

Potential therapeutic agents against Alzheimer’s disease from natural sources

  • Review
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

The average human life span in developed countries has increased to more than 80 years following rapid breakthrough and developments in modern medicine and science, resulting in prolonged life expectancy and increase in the population counts of the geriatric age group. This translates into a dramatic increase in disease burden of elderly patients suffering from senile disorders including neurodegenerative diseases, particularly Alzheimer’s disease (AD). AD is characterized by the death of nerve cells in the cerebral cortex and is the most common subtype of dementia that affected 25 million people worldwide in 2000 and is expected to increase to 114 million by 2050. Despite the exponential growth in the number of AD patients, only acetylcholinesterase (AChE) inhibitors are being currently used to treat AD. It is well known that AChE inhibitors can alleviate the symptoms of AD but not halt the disease progression. Consequently, therapeutic agents against AD acting at various pathologic levels are needed. In the recent decade, natural products with anti-AD properties have attracted much attention. But very few natural products have been investigated in a scientifically justifiable method for these biological activities. Following a detailed research process, it is certain that natural products have a strong potential to develop biologically active compounds with new chemical structures. Many studies have been carried out to identify the naturally occurring anti-AD agents. This review article describes the molecular targets aiming at developing the anti-AD agents including the inhibition of AChE, inhibition of Aβ production by enhancing α-secretase (non-amyloidogenic pathway) or inhibiting β- and γ-secretases (amyloidogenic pathway), alleviating Aβ-induced neurotoxicity or reducing Aβ-induced neuroinflammation. In addition, this paper summarizes the potential of some of the natural products that might inhibit specific molecular targets and slow the progression of this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramov, A. Y., Canevari, L., and Duchen, M. R., Changes in intracellular calcium and glutathione in astrocytes as the primary mechanism of amyloid neurotoxicity. J. Neurosci., 23, 5088–5095 (2003).

    CAS  PubMed  Google Scholar 

  • Ahmad, A., Khan, K. A., Ahmad, V. U., and Qazi, S., Antibacterial Activity of Juliflorine Isolated from Prosopis juliflora. Planta Med., 52, 285–288 (1986).

    Article  CAS  PubMed  Google Scholar 

  • Anderson, J. J., Holtz, G., Baskin, P. P., Turner, M., Rowe, B., Wang, B., Kounnas, M. Z., Lamb, B. T., Barten, D., Felsenstein, K., McDonald, I., Srinivasan, K., Munoz, B., Wagner, S. L., Reductions in beta-amyloid concentrations in vivo by the gamma-secretase inhibitors BMS-289948 and BMS-299897. Biochem. Pharmacol., 69, 689–698 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Ansari, M. A. and Scheff, S. W., Oxidative stress in the progression of Alzheimer disease in the frontal cortex. J. Neuropathol. Exp. Neurol., 69, 155–167 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Barrow, C. J. and Zagorski, M. G., Solution structures of beta peptide and its constituent fragments: relation to amyloid deposition. Science, 253, 179–182 (1991).

    Article  CAS  PubMed  Google Scholar 

  • Bastianetto, S., Ramassamy, C., Dore, S., Christen, Y., Poirier, J., and Quirion, R., The Ginkgo biloba extract (EGb 761) protects hippocampal neurons against cell death induced by beta-amyloid. Eur. J. Neurosci., 12, 1882–1890 (2000a).

    Article  CAS  PubMed  Google Scholar 

  • Bastianetto, S., Zheng, W. H., and Quirion, R., Neuroprotective abilities of resveratrol and other red wine constituents against nitric oxide-related toxicity in cultured hippocampal neurons. Br. J. Pharmacol., 131, 711–720 (2000b).

    Article  CAS  PubMed  Google Scholar 

  • Benzi, G. and Moretti, A., Are reactive oxygen species involved in Alzheimer’s disease? Neurobiol. Aging, 16, 661–674 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Block, M. L. and Hong, J. S., Microglia and inflammationmediated neurodegeneration: multiple triggers with a common mechanism. Prog. Neurobiol., 76, 77–98 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Block, M. L., Zecca, L., and Hong, J. S., Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat. Rev. Neurosci., 8, 57–69 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Blumenthal, M., Asian ginseng: potential therapeutic uses. Adv. Nurse Pract., 9, 26–28, 33 (2001).

    CAS  PubMed  Google Scholar 

  • Borek, C., Garlic reduces dementia and heart-disease risk. J. Nutr., 136, 810S–812S (2006).

    CAS  PubMed  Google Scholar 

  • Brinker, A. M., Ma, J., Lipsky, P. E., and Raskin, I., Medicinal chemistry and pharmacology of genus Tripterygium (Celastraceae). Phytochemistry, 68, 732–766 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Busciglio, J., Lorenzo, A., Yeh, J., and Yankner, B. A., betaamyloid fibrils induce tau phosphorylation and loss of microtubule binding. Neuron, 14, 879–888 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Cao, X. and Sudhof, T. C., Dissection of amyloid-beta precursor protein-dependent transcriptional transactivation. J. Biol. Chem., 279, 24601–24611 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Catalan, J., Moriguchi, T., Slotnick, B., Murthy, M., Greiner, R. S., and Salem, N., Jr., Cognitive deficits in docosahexaenoic acid-deficient rats. Behav. Neurosci., 116, 1022–1031 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Chang, Y. L., Shen, J. J., Wung, B. S., Cheng, J. J., and Wang, D. L., Chinese herbal remedy wogonin inhibits monocyte chemotactic protein-1 gene expression in human endothelial cells. Mol. Pharmacol., 60, 507–513 (2001).

    CAS  PubMed  Google Scholar 

  • Chauhan, N. B., Effect of aged garlic extract on APP processing and tau phosphorylation in Alzheimer’s transgenic model Tg2576. J. Ethnopharmacol., 108, 385–394 (2006).

    Article  PubMed  Google Scholar 

  • Chauhan, N. B. and Sandoval, J., Amelioration of early cognitive deficits by aged garlic extract in Alzheimer’s transgenic mice. Phytother. Res., 21, 629–640 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Choi, S. H., Hur, J. M., Yang, E. J., Jun, M., Park, H. J., Lee, K. B., Moon, E., and Song, K. S., Beta-secretase (BACE1) inhibitors from Perilla frutescens var. acuta. Arch. Pharm. Res., 31, 183–187 (2008a).

    Article  CAS  PubMed  Google Scholar 

  • Choi, Y. H., Yon, G. H., Hong, K. S., Yoo, D. S., Choi, C. W., Park, W. K., Kong, J. Y., Kim, Y. S., and Ryu, S. Y., In vitro BACE-1 inhibitory phenolic components from the seeds of Psoralea corylifolia. Planta Med., 74, 1405–1408 (2008b).

    Article  CAS  PubMed  Google Scholar 

  • Choi, Y. H., Yoo, M. Y., Choi, C. W., Cha, M. R., Yon, G. H., Kwon, D. Y., Kim, Y. S., Park, W. K., and Ryu, S. Y., A new specific BACE-1 inhibitor from the stembark extract of Vitis vinifera. Planta Med., 75, 537–540 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Chou, T. C., Anti-inflammatory and analgesic effects of paeonol in carrageenan-evoked thermal hyperalgesia. Br. J. Pharmacol., 139, 1146–1152 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Choudhary, M. I., Nawaz, S. A., ul-Haq, Z., Lodhi, M. A., Ghayur, M. N., Jalil, S., Riaz, N., Yousuf, S., Malik, A., Gilani, A. H., and ur-Rahman, A., Withanolides, a new class of natural cholinesterase inhibitors with calcium antagonistic properties. Biochem. Biophys. Res. Commun., 334, 276–287 (2005a).

    Article  CAS  PubMed  Google Scholar 

  • Choudhary, M. I., Nawaz, S. A., Zaheerul, H., Azim, M. K., Ghayur, M. N., Lodhi, M. A., Jalil, S., Khalid, A., Ahmed, A., Rode, B. M., Attaur, R., Gilani, A. U., and Ahmad, V. U., Juliflorine: a potent natural peripheral anionic-sitebinding inhibitor of acetylcholinesterase with calciumchannel blocking potential, a leading candidate for Alzheimer’s disease therapy. Biochem. Biophys. Res. Commun., 332, 1171–1177 (2005b).

    Article  CAS  PubMed  Google Scholar 

  • Colciaghi, F., Borroni, B., Zimmermann, M., Bellone, C., Longhi, A., Padovani, A., Cattabeni, F., Christen, Y., and Di Luca, M., Amyloid precursor protein metabolism is regulated toward alpha-secretase pathway by Ginkgo biloba extracts. Neurobiol. Dis., 16, 454–460 (2004).

    Article  PubMed  Google Scholar 

  • Cummings, J. L., Vinters, H. V., Cole, G. M., and Khachaturian, Z. S., Alzheimer’s disease: etiologies, pathophysiology, cognitive reserve, and treatment opportunities. Neurology, 51, S2–17; discussion S65-17 (1998).

    CAS  PubMed  Google Scholar 

  • Dinamarca, M. C., Cerpa, W., Garrido, J., Hancke, J. L., and Inestrosa, N. C., Hyperforin prevents beta-amyloid neurotoxicity and spatial memory impairments by disaggregation of Alzheimer’s amyloid-beta-deposits. Mol. Psychiatry, 11, 1032–1048 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Dovey, H. F., John, V., Anderson, J. P., Chen, L. Z., de Saint Andrieu, P., Fang, L. Y., Freedman, S. B., Folmer, B., Goldbach, E., Holsztynska, E. J., Hu, K. L., Johnson-Wood, K. L., Kennedy, S. L., Kholodenko, D., Knops, J. E., Latimer, L. H., Lee, M., Liao, Z., Lieberburg, I. M., Motter, R. N., Mutter, L. C., Nietz, J., Quinn, K. P., Sacchi, K. L., Seubert, P. A., Shopp, G. M., Thorsett, E. D., Tung, J. S., Wu, J., Yang, S., Yin, C. T., Schenk, D. B., May, P. C., Altstiel, L. D., Bender, M. H., Boggs, L. N., Britton, T. C., Clemens, J. C., Czilli, D. L., Dieckman-McGinty, D. K., Droste, J. J., Fuson, K. S., Gitter, B. D., Hyslop, P. A., Johnstone, E. M., Li, W. Y., Little, S. P., Mabry, T. E., Miller, F. D., and Audia, J. E., Functional gamma-secretase inhibitors reduce beta-amyloid peptide levels in brain. J. Neurochem., 76, 173–181 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Drew, P. D., Storer, P. D., Xu, J., and Chavis, J. A., Hormone regulation of microglial cell activation: relevance to multiple sclerosis. Brain Res. Brain Res. Rev., 48, 322–327 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Drieu, K., Preparation and definition of Ginkgo biloba extract. Presse Med., 15, 1455–1457 (1986).

    CAS  PubMed  Google Scholar 

  • Durairajan, S. S., Yuan, Q., Xie, L., Chan, W. S., Kum, W. F., Koo, I., Liu, C., Song, Y., Huang, J. D., Klein, W. L., and Li, M., Salvianolic acid B inhibits Abeta fibril formation and disaggregates preformed fibrils and protects against Abeta-induced cytotoxicty. Neurochem. Int., 52, 741–750 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Esch, F. S., Keim, P. S., Beattie, E. C., Blacher, R. W., Culwell, A. R., Oltersdorf, T., McClure, D., and Ward, P. J., Cleavage of amyloid beta peptide during constitutive processing of its precursor. Science, 248, 1122–1124 (1990).

    Article  CAS  PubMed  Google Scholar 

  • Ferris, S., Ihl, R., Robert, P., Winblad, B., Gatz, G., Tennigkeit, F., and Gauthier, S., Treatment effects of Memantine on language in moderate to severe Alzheimer’s disease patients. Alzheimers Dement., 5, 369–374 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Francis, P. T., Palmer, A. M., Snape, M., and Wilcock, G. K., The cholinergic hypothesis of Alzheimer’s disease: a review of progress. J. Neurol. Neurosurg. Psychiatr., 66, 137–147 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Fujiwara, H., Iwasaki, K., Furukawa, K., Seki, T., He, M., Maruyama, M., Tomita, N., Kudo, Y., Higuchi, M., Saido, T. C., Maeda, S., Takashima, A., Hara, M., Ohizumi, Y., and Arai, H., Uncaria rhynchophylla, a Chinese medicinal herb, has potent antiaggregation effects on Alzheimer’s beta-amyloid proteins. J. Neurosci. Res., 84, 427–433 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Fujiwara, H., Tabuchi, M., Yamaguchi, T., Iwasaki, K., Furukawa, K., Sekiguchi, K., Ikarashi, Y., Kudo, Y., Higuchi, M., Saido, T. C., Maeda, S., Takashima, A., Hara, M., Yaegashi, N., Kase, Y., and Arai, H., A traditional medicinal herb Paeonia suffruticosa and its active constituent 1,2,3,4,6-penta-O-galloyl-beta-D-glucopyranose have potent anti-aggregation effects on Alzheimer’s amyloid beta proteins in vitro and in vivo. J. Neurochem., 109, 1648–1657 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Ganguli, M., Chandra, V., Kamboh, M. I., Johnston, J. M., Dodge, H. H., Thelma, B. K., Juyal, R. C., Pandav, R., Belle, S. H., and DeKosky, S. T., Apolipoprotein E polymorphism and Alzheimer disease: The Indo-US Cross-National Dementia Study. Arch. Neurol., 57, 824–830 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Gao, Y. G., Song, Y. M., Yang, Y. Y., Liu, W. F., and Tang, J. X., [Pharmacology of tanshinone (author’s transl)]. Yao Xue Xue Bao, 14, 75–82 (1979).

    CAS  PubMed  Google Scholar 

  • Giunta, B., Hou, H., Zhu, Y., Salemi, J., Ruscin, A., Shytle, R. D., and Tan, J., Fish oil enhances anti-amyloidogenic properties of green tea EGCG in Tg2576 mice. Neurosci. Lett., 471, 134–138 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Gong, Y., Xue, B., Jiao, J., Jing, L., and Wang, X., Triptolide inhibits COX-2 expression and PGE2 release by suppressing the activity of NF-kappaB and JNK in LPS-treated microglia. J. Neurochem., 107, 779–788 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Scarano, F. and Baltuch, G., Microglia as mediators of inflammatory and degenerative diseases. Annu. Rev. Neurosci., 22, 219–240 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Greenberg, S. M. and Kosik, K. S., Secreted beta-APP stimulates MAP kinase and phosphorylation of tau in neurons. Neurobiol. Aging, 16, 403–407; discussion 407–408 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Gupta, V. B., Indi, S. S., and Rao, K. S., Garlic extract exhibits antiamyloidogenic activity on amyloid-beta fibrillogenesis: relevance to Alzheimer’s disease. Phytother. Res., 23, 111–115 (2009).

    Article  PubMed  Google Scholar 

  • Hanisch, U. K., Microglia as a source and target of cytokines. Glia, 40, 140–155 (2002).

    Article  PubMed  Google Scholar 

  • Hebert, L. E., Scherr, P. A., Bienias, J. L., Bennett, D. A., and Evans, D. A., Alzheimer disease in the US population: prevalence estimates using the 2000 census. Arch. Neurol., 60, 1119–1122 (2003).

    Article  PubMed  Google Scholar 

  • Heneka, M. T. and O’Banion, M. K., Inflammatory processes in Alzheimer’s disease. J. Neuroimmunol., 184, 69–91 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Hsieh, L. T., Yang, H. H., and Chen, H. W., Ambient BTEX and MTBE in the neighborhoods of different industrial parks in Southern Taiwan. J. Hazard. Mater., 128, 106–115 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Ikemoto, A., Ohishi, M., Sato, Y., Hata, N., Misawa, Y., Fujii, Y., and Okuyama, H., Reversibility of n-3 fatty acid deficiency-induced alterations of learning behavior in the rat: level of n-6 fatty acids as another critical factor. J. Lipid Res., 42, 1655–1663 (2001).

    CAS  PubMed  Google Scholar 

  • Iqbal, K., Liu, F., Gong, C. X., Alonso Adel, C., and Grundke-Iqbal, I., Mechanisms of tau-induced neurodegeneration. Acta Neuropathol., 118, 53–69 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Jeon, S. Y., Bae, K., Seong, Y. H., and Song, K. S., Green tea catechins as a BACE1 (beta-secretase) inhibitor. Bioorg. Med. Chem. Lett., 13, 3905–3908 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Jeon, S. Y., Kwon, S. H., Seong, Y. H., Bae, K., Hur, J. M., Lee, Y. Y., Suh, D. Y., and Song, K. S., Beta-secretase (BACE1)-inhibiting stilbenoids from Smilax Rhizoma. Phytomedicine, 14, 403–408 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Ji, Z. N., Dong, T. T., Ye, W. C., Choi, R. C., Lo, C. K., and Tsim, K. W., Ginsenoside Re attenuate beta-amyloid and serum-free induced neurotoxicity in PC12 cells. J. Ethnopharmacol., 107, 48–52 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Jia, H., Jiang, Y., Ruan, Y., Zhang, Y., Ma, X., Zhang, J., Beyreuther, K., Tu, P., and Zhang, D., Tenuigenin treatment decreases secretion of the Alzheimer’s disease amyloid beta-protein in cultured cells. Neurosci. Lett., 367, 123–128 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Jin, C. Y., Lee, J. D., Park, C., Choi, Y. H., and Kim, G. Y., Curcumin attenuates the release of pro-inflammatory cytokines in lipopolysaccharide-stimulated BV2 microglia. Acta Pharmacol. Sin., 28, 1645–1651 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Jung, H. A., Min, B. S., Yokozawa, T., Lee, J. H., Kim, Y. S., and Choi, J. S., Anti-Alzheimer and antioxidant activities of Coptidis Rhizoma alkaloids. Biol. Pharm. Bull., 32, 1433–1438 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Kalmijn, S., van Boxtel, M. P., Ocke, M., Verschuren, W. M., Kromhout, D., and Launer, L. J., Dietary intake of fatty acids and fish in relation to cognitive performance at middle age. Neurology, 62, 275–280 (2004).

    CAS  PubMed  Google Scholar 

  • Kang, G., Kong, P. J., Yuh, Y. J., Lim, S. Y., Yim, S. V., Chun, W., and Kim, S. S., Curcumin suppresses lipopolysaccharideinduced cyclooxygenase-2 expression by inhibiting activator protein 1 and nuclear factor kappab bindings in BV2 microglial cells. J. Pharmacol. Sci., 94, 325–328 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Kelloff, G. J., Crowell, J. A., Steele, V. E., Lubet, R. A., Malone, W. A., Boone, C. W., Kopelovich, L., Hawk, E. T., Lieberman, R., Lawrence, J. A., Ali, I., Viner, J. L., and Sigman, C. C., Progress in cancer chemoprevention: development of diet-derived chemopreventive agents. J. Nutr., 130, 467S–471S (2000).

    CAS  PubMed  Google Scholar 

  • Kim, D. H., Jeon, S. J., Jung, J. W., Lee, S., Yoon, B. H., Shin, B. Y., Son, K. H., Cheong, J. H., Kim, Y. S., Kang, S. S., Ko, K. H., and Ryu, J. H., Tanshinone congeners improve memory impairments induced by scopolamine on passive avoidance tasks in mice. Eur. J. Pharmacol., 574, 140–147 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Kim, H., Kim, Y. S., Kim, S. Y., and Suk, K., The plant flavonoid wogonin suppresses death of activated C6 rat glial cells by inhibiting nitric oxide production. Neurosci. Lett., 309, 67–71 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Kimura, Y., Matsushita, N., Yokoi-Hayashi, K., and Okuda, H., Effects of baicalein isolated from Scutellaria baicalensis Radix on adhesion molecule expression induced by thrombin and thrombin receptor agonist peptide in cultured human umbilical vein endothelial cells. Planta Med., 67, 331–334 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Klein, W. L., Krafft, G. A., and Finch, C. E., Targeting small Abeta oligomers: the solution to an Alzheimer’s disease conundrum? Trends Neurosci., 24, 219–224 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Kuboyama, T., Tohda, C., and Komatsu, K., Neuritic regeneration and synaptic reconstruction induced by withanolide A. Br. J. Pharmacol., 144, 961–971 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Lanz, T. A., Hosley, J. D., Adams, W. J., and Merchant, K. M., Studies of Abeta pharmacodynamics in the brain, cerebrospinal fluid, and plasma in young (plaque-free) Tg2576 mice using the gamma-secretase inhibitor N2-[(2S)-2-(3,5-difluorophenyl)-2-hydroxyethanoyl]-N1-[(7S)-5-methyl-6-oxo -6,7-dihydro-5H-dibenzo[b,d]azepin-7-yl]-L-alaninamide (LY-411575). J. Pharmacol. Exp. Ther., 309, 49–55 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Lee, H., Kim, Y. O., Kim, H., Kim, S. Y., Noh, H. S., Kang, S. S., Cho, G. J., Choi, W. S., and Suk, K., Flavonoid wogonin from medicinal herb is neuroprotective by inhibiting inflammatory activation of microglia. FASEB J., 17, 1943–1944 (2003).

    CAS  PubMed  Google Scholar 

  • Lee, H. S., Jung, K. K., Cho, J. Y., Rhee, M. H., Hong, S., Kwon, M., Kim, S. H., and Kang, S. Y., Neuroprotective effect of curcumin is mainly mediated by blockade of microglial cell activation. Pharmazie, 62, 937–942 (2007).

    CAS  PubMed  Google Scholar 

  • Lee, J. W., Lee, Y. K., Ban, J. O., Ha, T. Y., Yun, Y. P., Han, S. B., Oh, K. W., and Hong, J. T., Green tea (−)-epigallocatechin-3-gallate inhibits beta-amyloid-induced cognitive dysfunction through modification of secretase activity via inhibition of ERK and NF-kappaB pathways in mice. J. Nutr., 139, 1987–1993 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Lee, J. W., Lee, Y. K., Lee, B. J., Nam, S. Y., Lee, S. I., Kim, Y. H., Kim, K. H., Oh, K. W., and Hong, J. T., Inhibitory effect of ethanol extract of Magnolia officinalis and 4-Omethylhonokiol on memory impairment and neuronal toxicity induced by beta-amyloid. Pharmacol. Biochem. Behav., 95, 31–40 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Lesne, S. and Kotilinek, L., Amyloid plaques and amyloidbeta oligomers: an ongoing debate. J. Neurosci., 25, 9319–9320 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Letenneur, L., Dartigues, J. F., and Orgogozo, J. M., Wine consumption in the elderly. Ann. Intern. Med., 118, 317–318 (1993).

    CAS  PubMed  Google Scholar 

  • Li, F. Q., Wang, T., Pei, Z., Liu, B., and Hong, J. S., Inhibition of microglial activation by the herbal flavonoid baicalein attenuates inflammation-mediated degeneration of dopaminergic neurons. J. Neural Transm., 112, 331–347 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Li, L., Tsai, H. J., and Wang, X. M., Icariin inhibits the increased inward calcium currents induced by amyloidbeta( 25–35) peptide in CA1 pyramidal neurons of neonatal rat hippocampal slice. Am. J. Chin. Med., 38, 113–125 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Li, N., Liu, B., Dluzen, D. E., and Jin, Y., Protective effects of ginsenoside Rg2 against glutamate-induced neurotoxicity in PC12 cells. J. Ethnopharmacol., 111, 458–463 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Li, Q., Zhao, H. F., Zhang, Z. F., Liu, Z. G., Pei, X. R., Wang, J. B., and Li, Y., Long-term green tea catechin administration prevents spatial learning and memory impairment in senescence-accelerated mouse prone-8 mice by decreasing Abeta1–42 oligomers and upregulating synaptic plasticity-related proteins in the hippocampus. Neuroscience, 163, 741–749 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Lim, G. P., Chu, T., Yang, F., Beech, W., Frautschy, S. A., and Cole, G. M., The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. J. Neurosci., 21, 8370–8377 (2001).

    CAS  PubMed  Google Scholar 

  • Lim, G. P., Calon, F., Morihara, T., Yang, F., Teter, B., Ubeda, O., Salem, N., Jr., Frautschy, S. A., and Cole, G. M., A diet enriched with the omega-3 fatty acid docosahexaenoic acid reduces amyloid burden in an aged Alzheimer mouse model. J. Neurosci., 25, 3032–3040 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Lim, J. Y., Won, T. J., Hwang, B. Y., Kim, H. R., Hwang, K. W., Sul, D., and Park, S. Y., The new diterpene isodojaponin D inhibited LPS-induced microglial activation through NF-kappaB and MAPK signaling pathways. Eur. J. Pharmacol., 642, 10–18 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Lin, H. C., Ding, H. Y., Ko, F. N., Teng, C. M., and Wu, Y. C., Aggregation inhibitory activity of minor acetophenones from Paeonia species. Planta Med., 65, 595–599 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Lin, L. C., Wang, M. N., Tseng, T. Y., Sung, J. S., and Tsai, T. H., Pharmacokinetics of (-)-epigallocatechin-3-gallate in conscious and freely moving rats and its brain regional distribution. J. Agric. Food Chem., 55, 1517–1524 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Lin, Y. H., Liu, A. H., Wu, H. L., Westenbroek, C., Song, Q. L., Yu, H. M., Ter Horst, G. J., and Li, X. J., Salvianolic acid B, an antioxidant from Salvia miltiorrhiza, prevents Abeta(25–35)-induced reduction in BPRP in PC12 cells. Biochem. Biophys. Res. Commun., 348, 593–599 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Lipton, S. A., Pathologically-activated therapeutics for neuroprotection: mechanism of NMDA receptor block by memantine and S-nitrosylation. Curr. Drug Targets, 8, 621–632 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Lleo, A., Greenberg, S. M., and Growdon, J. H., Current pharmacotherapy for Alzheimer’s disease. Annu. Rev. Med., 57, 513–533 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Lue, L. F., Kuo, Y. M., Roher, A. E., Brachova, L., Shen, Y., Sue, L., Beach, T., Kurth, J. H., Rydel, R. E., and Rogers, J., Soluble amyloid beta peptide concentration as a predictor of synaptic change in Alzheimer’s disease. Am. J. Pathol., 155, 853–862 (1999).

    CAS  PubMed  Google Scholar 

  • Lv, J., Jia, H., Jiang, Y., Ruan, Y., Liu, Z., Yue, W., Beyreuther, K., Tu, P., and Zhang, D., Tenuifolin, an extract derived from tenuigenin, inhibits amyloid-beta secretion in vitro. Acta Physiol. (Oxf), 196, 419–425 (2009).

    Article  CAS  Google Scholar 

  • Marco, L. and do Carmo Carreiras, M., Galanthamine, a natural product for the treatment of Alzheimer’s disease. Recent Pat. CNS Drug Discov., 1, 105–111 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Marumoto, S. and Miyazawa, M., beta-secretase inhibitory effects of furanocoumarins from the root of Angelica dahurica. Phytother. Res., 24, 510–513 (2010).

    CAS  PubMed  Google Scholar 

  • Mecocci, P., Bladstrom, A., and Stender, K., Effects of memantine on cognition in patients with moderate to severe Alzheimer’s disease: post-hoc analyses of ADAScog and SIB total and single-item scores from six randomized, double-blind, placebo-controlled studies. Int. J. Geriatr. Psychiatry, 24, 532–538 (2009).

    Article  PubMed  Google Scholar 

  • Mei, Z., Zhang, F., Tao, L., Zheng, W., Cao, Y., Wang, Z., Tang, S., Le, K., Chen, S., Pi, R., and Liu, P., Cryptotanshinone, a compound from Salvia miltiorrhiza modulates amyloid precursor protein metabolism and attenuates beta-amyloid deposition through upregulating alphasecretase in vivo and in vitro. Neurosci. Lett., 452, 90–95 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Minghetti, L. and Levi, G., Microglia as effector cells in brain damage and repair: focus on prostanoids and nitric oxide. Prog. Neurobiol., 54, 99–125 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Montine, T. J., Neely, M. D., Quinn, J. F., Beal, M. F., Markesbery, W. R., Roberts, L. J., and Morrow, J. D., Lipid peroxidation in aging brain and Alzheimer’s disease. Free Radic. Biol. Med., 33, 620–626 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Morris, M. C., Evans, D. A., Bienias, J. L., Tangney, C. C., Bennett, D. A., Wilson, R. S., Aggarwal, N., and Schneider, J., Consumption of fish and n-3 fatty acids and risk of incident Alzheimer disease. Arch. Neurol., 60, 940–946 (2003).

    Article  PubMed  Google Scholar 

  • Newman, D. J. and Cragg, G. M., Natural products as sources of new drugs over the last 25 years. J. Nat. Prod., 70, 461–477 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Nunan, J. and Small, D. H., Regulation of APP cleavage by alpha-, beta- and gamma-secretases. FEBS Lett., 483, 6–10 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Oberpichler, H., Beck, T., Abdel-Rahman, M. M., Bielenberg, G. W., and Krieglstein, J., Effects of Ginkgo biloba constituents related to protection against brain damage caused by hypoxia. Pharmacol. Res. Commun., 20, 349–368 (1988).

    Article  CAS  PubMed  Google Scholar 

  • Ono, K., Hasegawa, K., Naiki, H., and Yamada, M., Antiamyloidogenic activity of tannic acid and its activity to destabilize Alzheimer’s beta-amyloid fibrils in vitro. Biochim. Biophys. Acta, 1690, 193–202 (2004a).

    CAS  PubMed  Google Scholar 

  • Ono, K., Hasegawa, K., Naiki, H., and Yamada, M., Curcumin has potent anti-amyloidogenic effects for Alzheimer’s beta-amyloid fibrils in vitro. J. Neurosci. Res., 75, 742–750 (2004b).

    Article  CAS  PubMed  Google Scholar 

  • Orgogozo, J. M., Dartigues, J. F., Lafont, S., Letenneur, L., Commenges, D., Salamon, R., Renaud, S., and Breteler, M. B., Wine consumption and dementia in the elderly: a prospective community study in the Bordeaux area. Rev. Neurol. (Paris), 153, 185–192 (1997).

    CAS  Google Scholar 

  • Ortega, M. G., Agnese, A. M., and Cabrera, J. L., Anticholinesterase activity in an alkaloid extract of Huperzia saururus. Phytomedicine, 11, 539–543 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Panegyres, P. K., The functions of the amyloid precursor protein gene. Rev. Neurosci., 12, 1–39 (2001).

    CAS  PubMed  Google Scholar 

  • Park, B. K., Heo, M. Y., Park, H., and Kim, H. P., Inhibition of TPA-induced cyclooxygenase-2 expression and skin inflammation in mice by wogonin, a plant flavone from Scutellaria radix. Eur. J. Pharmacol., 425, 153–157 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Park, C. H., Choi, S. H., Koo, J. W., Seo, J. H., Kim, H. S., Jeong, S. J., and Suh, Y. H., Novel cognitive improving and neuroprotective activities of Polygala tenuifolia Willdenow extract, BT-11. J. Neurosci. Res., 70, 484–492 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Park, E. K., Choo, M. K., Oh, J. K., Ryu, J. H., and Kim, D. H., Ginsenoside Rh2 reduces ischemic brain injury in rats. Biol. Pharm. Bull., 27, 433–436 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Park, J. S., Park, E. M., Kim, D. H., Jung, K., Jung, J. S., Lee, E. J., Hyun, J. W., Kang, J. L., and Kim, H. S., Antiinflammatory mechanism of ginseng saponins in activated microglia. J. Neuroimmunol., 209, 40–49 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Park, S. Y., Kim, H. S., Cho, E. K., Kwon, B. Y., Phark, S., Hwang, K. W., and Sul, D., Curcumin protected PC12 cells against beta-amyloid-induced toxicity through the inhibition of oxidative damage and tau hyperphosphorylation. Food Chem. Toxicol., 46, 2881–2887 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Park, S. Y., Neuroprotective and neurotrophic effects of isorosmanol. Z. Naturforsch. C, 64, 395–398 (2009).

    CAS  PubMed  Google Scholar 

  • Park, S. Y., Lim, J. Y., Jeong, W., Hong, S. S., Yang, Y. T., Hwang, B. Y., and Lee, D., C-methylflavonoids isolated from Callistemon lanceolatus protect PC12 cells against Abeta-induced toxicity. Planta Med., 76, 863–868 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Peng, Y., Xing, C., Lemere, C. A., Chen, G., Wang, L., Feng, Y., and Wang, X., l-3-n-Butylphthalide ameliorates betaamyloid-induced neuronal toxicity in cultured neuronal cells. Neurosci. Lett., 434, 224–229 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Peng, Y., Xing, C., Xu, S., Lemere, C. A., Chen, G., Liu, B., Wang, L., Feng, Y., and Wang, X., L-3-n-butylphthalide improves cognitive impairment induced by intracerebroventricular infusion of amyloid-beta peptide in rats. Eur. J. Pharmacol., 621, 38–45 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Peng, Y., Sun, J., Hon, S., Nylander, A. N., Xia, W., Feng, Y., Wang, X., and Lemere, C. A., L-3-n-butylphthalide improves cognitive impairment and reduces amyloid-beta in a transgenic model of Alzheimer’s disease. J. Neurosci., 30, 8180–8189 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Pike, C. J., Ramezan-Arab, N., and Cotman, C. W., Betaamyloid neurotoxicity in vitro: evidence of oxidative stress but not protection by antioxidants. J. Neurochem., 69, 1601–1611 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Qian, Y. H., Han, H., Hu, X. D., and Shi, L. L., Protective effect of ginsenoside Rb1 on beta-amyloid protein(1–42)-induced neurotoxicity in cortical neurons. Neurol. Res., 31, 663–667 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Qiu, D. and Kao, P. N., Immunosuppressive and anti-inflammatory mechanisms of triptolide, the principal active diterpenoid from the Chinese medicinal herb Tripterygium wilfordii Hook. f. Drugs R D, 4, 1–18 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Radad, K., Gille, G., Liu, L., and Rausch, W. D., Use of ginseng in medicine with emphasis on neurodegenerative disorders. J. Pharmacol. Sci., 100, 175–186 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Rai, G. S., Shovlin, C., and Wesnes, K. A., A double-blind, placebo controlled study of Ginkgo biloba extract (’tanakan’) in elderly outpatients with mild to moderate memory impairment. Curr. Med. Res. Opin., 12, 350–355 (1991).

    CAS  PubMed  Google Scholar 

  • Rank, K. B., Pauley, A. M., Bhattacharya, K., Wang, Z., Evans, D. B., Fleck, T. J., Johnston, J. A., and Sharma, S. K., Direct interaction of soluble human recombinant tau protein with Abeta 1–42 results in tau aggregation and hyperphosphorylation by tau protein kinase II. FEBS Lett., 514, 263–268 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Rapoport, M., Dawson, H. N., Binder, L. I., Vitek, M. P., and Ferreira, A., Tau is essential to beta -amyloid-induced neurotoxicity. Proc. Natl. Acad. Sci. U.S.A., 99, 6364–6369 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Rezai-Zadeh, K., Shytle, D., Sun, N., Mori, T., Hou, H., Jeanniton, D., Ehrhart, J., Townsend, K., Zeng, J., Morgan, D., Hardy, J., Town, T., and Tan, J., Green tea epigallocatechin-3-gallate (EGCG) modulates amyloid precursor protein cleavage and reduces cerebral amyloidosis in Alzheimer transgenic mice. J. Neurosci., 25, 8807–8814 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Rezai-Zadeh, K., Arendash, G. W., Hou, H., Fernandez, F., Jensen, M., Runfeldt, M., Shytle, R. D., and Tan, J., Green tea epigallocatechin-3-gallate (EGCG) reduces betaamyloid mediated cognitive impairment and modulates tau pathology in Alzheimer transgenic mice. Brain Res., 1214, 177–187 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Roberson, E. D. and Mucke, L., 100 years and counting: prospects for defeating Alzheimer’s disease. Science, 314, 781–784 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Roberson, E. D., Scearce-Levie, K., Palop, J. J., Yan, F., Cheng, I. H., Wu, T., Gerstein, H., Yu, G. Q., and Mucke, L., Reducing endogenous tau ameliorates amyloid betainduced deficits in an Alzheimer’s disease mouse model. Science, 316, 750–754 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Rojo, L. E., Fernandez, J. A., Maccioni, A. A., Jimenez, J. M., and Maccioni, R. B., Neuroinflammation: implications for the pathogenesis and molecular diagnosis of Alzheimer’s disease. Arch. Med. Res., 39, 1–16 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Rosen, D. R., Martin-Morris, L., Luo, L. Q., and White, K., A Drosophila gene encoding a protein resembling the human beta-amyloid protein precursor. Proc. Natl. Acad. Sci. U.S.A., 86, 2478–2482 (1989).

    Article  CAS  PubMed  Google Scholar 

  • Rovira, C., Arbez, N., and Mariani, J., Abeta(25–35) and Abeta(1–40) act on different calcium channels in CA1 hippocampal neurons. Biochem. Biophys. Res. Commun., 296, 1317–1321 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Rudakewich, M., Ba, F., and Benishin, C. G., Neurotrophic and neuroprotective actions of ginsenosides Rb(1) and Rg(1). Planta Med., 67, 533–537 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Selkoe, D. J., The cell biology of beta-amyloid precursor protein and presenilin in Alzheimer’s disease. Trends Cell Biol., 8, 447–453 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Selkoe, D. J., Alzheimer’s disease: genes, proteins, and therapy. Physiol. Rev., 81, 741–766 (2001).

    CAS  PubMed  Google Scholar 

  • Selkoe, D. J., Alzheimer’s disease is a synaptic failure. Science, 298, 789–791 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Seubert, P., Oltersdorf, T., Lee, M. G., Barbour, R., Blomquist, C., Davis, D. L., Bryant, K., Fritz, L. C., Galasko, D., and Thal, L. J., Secretion of beta-amyloid precursor protein cleaved at the amino terminus of the beta-amyloid peptide. Nature, 361, 260–263 (1993).

    Article  CAS  PubMed  Google Scholar 

  • Sha, D., Li, L., Ye, L., Liu, R., and Xu, Y., Icariin inhibits neurotoxicity of beta-amyloid by upregulating cocaine-regulated and amphetamine-regulated transcripts. Neuroreport, 20, 1564–1567 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Shi, C., Zhao, L., Zhu, B., Li, Q., Yew, D. T., Yao, Z., and Xu, J., Protective effects of Ginkgo biloba extract (EGb761) and its constituents quercetin and ginkgolide B against beta-amyloid peptide-induced toxicity in SH-SY5Y cells. Chem. Biol. Interact., 181, 115–123 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Shimada, Y., Goto, H., Itoh, T., Sakakibara, I., Kubo, M., Sasaki, H., and Terasawa, K., Evaluation of the protective effects of alkaloids isolated from the hooks and stems of Uncaria sinensis on glutamate-induced neuronal death in cultured cerebellar granule cells from rats. J. Pharm. Pharmacol., 51, 715–722 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Shytle, R. D., Bickford, P. C., Rezai-zadeh, K., Hou, L., Zeng, J., Tan, J., Sanberg, P. R., Sanberg, C. D., Roschek, B., Jr., Fink, R. C., and Alberte, R. S., Optimized turmeric extracts have potent anti-amyloidogenic effects. Curr. Alzheimer Res., 6, 564–571 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Smith, W. W., Gorospe, M., and Kusiak, J. W., Signaling mechanisms underlying Abeta toxicity: potential therapeutic targets for Alzheimer’s disease. CNS Neurol. Disord. Drug Targets, 5, 355–361 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Sonkusare, S. K., Kaul, C. L., and Ramarao, P., Dementia of Alzheimer’s disease and other neurodegenerative disorders-memantine, a new hope. Pharmacol. Res., 51, 1–17 (2005).

    CAS  PubMed  Google Scholar 

  • Sramek, J. J., Frackiewicz, E. J., and Cutler, N. R., Review of the acetylcholinesterase inhibitor galanthamine. Expert Opin. Investig. Drugs, 9, 2393–2402 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Sreejayan and Rao, M. N., Nitric oxide scavenging by curcuminoids. J. Pharm. Pharmacol., 49, 105–107 (1997).

    CAS  PubMed  Google Scholar 

  • St George-Hyslop, P. H. and Petit, A., Molecular biology and genetics of Alzheimer’s disease. C. R. Biol., 328, 119–130 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Suk, K., Lee, H., Kang, S. S., Cho, G. J., and Choi, W. S., Flavonoid baicalein attenuates activation-induced cell death of brain microglia. J. Pharmacol. Exp. Ther., 305, 638–645 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Szabo, M. E., Droy-Lefaix, M. T., and Doly, M., Direct measurement of free radicals in ischemic/reperfused diabetic rat retina. Clin. Neurosci., 4, 240–245 (1997).

    CAS  PubMed  Google Scholar 

  • Takahashi, Y., Fuwa, H., Kaneko, A., Sasaki, M., Yokoshima, S., Koizumi, H., Takebe, T., Kan, T., Iwatsubo, T., Tomita, T., Natsugari, H., and Fukuyama, T., Novel gamma-secretase inhibitors discovered by library screening of in-house synthetic natural product intermediates. Bioorg. Med. Chem. Lett., 16, 3813–3816 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Takashima, A., Honda, T., Yasutake, K., Michel, G., Murayama, O., Murayama, M., Ishiguro, K., and Yamaguchi, H., Activation of tau protein kinase I/glycogen synthase kinase-3beta by amyloid beta peptide (25–35) enhances phosphorylation of tau in hippocampal neurons. Neurosci. Res., 31, 317–323 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Tanzi, R. E. and Bertram, L., Twenty years of the Alzheimer’s disease amyloid hypothesis: a genetic perspective. Cell, 120, 545–555 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Tian, J., Fu, F., Geng, M., Jiang, Y., Yang, J., Jiang, W., Wang, C., and Liu, K., Neuroprotective effect of 20(S)-ginsenoside Rg3 on cerebral ischemia in rats. Neurosci. Lett., 374, 92–97 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Tierney, M. C., Fisher, R. H., Lewis, A. J., Zorzitto, M. L., Snow, W. G., Reid, D. W., and Nieuwstraten, P., The NINCDS-ADRDA Work Group criteria for the clinical diagnosis of probable Alzheimer’s disease: a clinicopathologic study of 57 cases. Neurology, 38, 359–364 (1988).

    CAS  PubMed  Google Scholar 

  • Um, M. Y., Ahn, J. Y., Kim, S., Kim, M. K., and Ha, T. Y., Sesaminol glucosides protect beta-amyloid peptide-induced cognitive deficits in mice. Biol. Pharm. Bull., 32, 1516–1520 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Van Marum, R. J., Current and future therapy in Alzheimer’s disease. Fundam. Clin. Pharmacol., 22, 265–274 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Virgili, M. and Contestabile, A., Partial neuroprotection of in vivo excitotoxic brain damage by chronic administration of the red wine antioxidant agent, trans-resveratrol in rats. Neurosci. Lett., 281, 123–126 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Wakabayashi, I., Inhibitory effects of baicalein and wogonin on lipopolysaccharide-induced nitric oxide production in macrophages. Pharmacol. Toxicol., 84, 288–291 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Wallin, A. K., Blennow, K., Andreasen, N., and Minthon, L., CSF biomarkers for Alzheimer’s Disease: levels of betaamyloid, tau, phosphorylated tau relate to clinical symptoms and survival. Dement. Geriatr. Cogn. Disord., 21, 131–138 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Walsh, D. M. and Selkoe, D. J., A beta oligomers — a decade of discovery. J. Neurochem., 101, 1172–1184 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Wang, L. C., Wang, B., Ng, S. Y., and Lee, T. F., Effects of ginseng saponins on beta-amyloid-induced amnesia in rats. J. Ethnopharmacol., 103, 103–108 (2006a).

    Article  CAS  PubMed  Google Scholar 

  • Wang, R., Zhang, H. Y., and Tang, X. C., Huperzine A attenuates cognitive dysfunction and neuronal degeneration caused by beta-amyloid protein-(1–40) in rat. Eur. J. Pharmacol., 421, 149–156 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Wang, R., Yan, H., and Tang, X. C., Progress in studies of huperzine A, a natural cholinesterase inhibitor from Chinese herbal medicine. Acta Pharmacol. Sin., 27, 1–26 (2006b).

    Article  PubMed  CAS  Google Scholar 

  • Wimo, A., Winblad, B., Aguero-Torres, H., and von Strauss, E., The magnitude of dementia occurrence in the world. Alzheimer Dis. Assoc. Disord., 17, 63–67 (2003).

    Article  PubMed  Google Scholar 

  • Wirths, O., Multhaup, G., and Bayer, T. A., A modified betaamyloid hypothesis: intraneuronal accumulation of the beta-amyloid peptide—the first step of a fatal cascade. J. Neurochem., 91, 513–520 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Xiao, X. Q., Wang, R., Han, Y. F., and Tang, X. C., Protective effects of huperzine A on beta-amyloid (25–35) induced oxidative injury in rat pheochromocytoma cells. Neurosci. Lett., 286, 155–158 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Yan, H., Zhang, H. Y., and Tang, X. C., Involvement of M1-muscarinic acetylcholine receptors, protein kinase C and mitogen-activated protein kinase in the effect of huperzine A on secretory amyloid precursor protein-alpha. Neuroreport, 18, 689–692 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Yan, R., Bienkowski, M. J., Shuck, M. E., Miao, H., Tory, M. C., Pauley, A. M., Brashier, J. R., Stratman, N. C., Mathews, W. R., Buhl, A. E., Carter, D. B., Tomasselli, A. G., Parodi, L. A., Heinrikson, R. L., and Gurney, M. E., Membraneanchored aspartyl protease with Alzheimer’s disease betasecretase activity. Nature, 402, 533–537 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Yurko-Mauro, K., Cognitive and cardiovascular benefits of docosahexaenoic acid in aging and cognitive decline. Curr. Alzheimer Res., 7, 190–196 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Zaveri, N. T., Green tea and its polyphenolic catechins: medicinal uses in cancer and noncancer applications. Life Sci., 78, 2073–2080 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Zhang, D., Zhang, Y., Liu, G., and Zhang, J., Dactylorhin B reduces toxic effects of beta-amyloid fragment (25–35) on neuron cells and isolated rat brain mitochondria. Naunyn Schmiedebergs Arch. Pharmacol., 374, 117–125 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Zhang, J., Cheng, Y., and Zhang, J. T., Protective effect of (−) clausenamide against neurotoxicity induced by okadaic acid and beta-amyloid peptide25–35. Yao Xue Xue Bao, 42, 935–942 (2007).

    CAS  PubMed  Google Scholar 

  • Zhao, B. L., Li, X. J., He, R. G., Cheng, S. J., and Xin, W. J., Scavenging effect of extracts of green tea and natural antioxidants on active oxygen radicals. Cell Biophys., 14, 175–185 (1989).

    CAS  PubMed  Google Scholar 

  • Zheng, W. H., Bastianetto, S., Mennicken, F., Ma, W., and Kar, S., Amyloid beta peptide induces tau phosphorylation and loss of cholinergic neurons in rat primary septal cultures. Neuroscience, 115, 201–211 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Zhou, H. F., Liu, X. Y., Niu, D. B., Li, F. Q., He, Q. H., and Wang, X. M., Triptolide protects dopaminergic neurons from inflammation-mediated damage induced by lipopolysaccharide intranigral injection. Neurobiol. Dis., 18, 441–449 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Zipp, F. and Aktas, O., The brain as a target of inflammation: common pathways link inflammatory and neurodegenerative diseases. Trends Neurosci., 29, 518–527 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to So-Young Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, SY. Potential therapeutic agents against Alzheimer’s disease from natural sources. Arch. Pharm. Res. 33, 1589–1609 (2010). https://doi.org/10.1007/s12272-010-1010-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-010-1010-y

Key words

Navigation