Skip to main content
Log in

Effect of stable inhibition of NRF2 on doxorubicin sensitivity in human ovarian carcinoma OV90 cells

  • Research Articles
  • Drug Actions
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

The transcription factor NRF2 defends the cell from oxidative stress by up-regulating a large number of antioxidant genes through its binding with antioxidant response element on gene promoters. Cancer cells are known to possess high levels of antioxidant genes that increases survival in cancer microenvironment of oxidative stress, particularly in the treatment with anticancer agents. In the current study we have examined the role of the NRF2 in doxorubicin sensitivity and tumor growth by establishing stable cell line expressing NRF2 shRNA in the human ovarian carcinoma cell line OV90. On knockdown of NRF2 through NRF2-specific shNRF2 expressing lentiviral plasmid, antioxidant response element-driven luciferase activity as well as the expression of NRF2-target genes were significantly suppressed compared to nonspecific scrambled RNA (scRNA) expressing cells. In addition, shNRF2 expressing OV90-shNRF2 cells showed a reduction in total GSH levels by 82% and cell growth was observed to be significantly retarded compared to scRNA control cells. Furthermore, stable inhibition of NRF2 sensitized OV90 cells were seen following doxorubicin treatment as shown by the analysis with MTT assay and propidium iodide-fluorescence-activated cell sorting. OV90-shNRF2 cells showed higher levels of cell death and apoptosis in response to doxorubicin than OV90-scRNA cells. While, when BALBc (nu/nu) mice with OV90 tumor xenograft in the flanks were injected with NRF2 shRNA containing viral particles and treated with doxorubicin a pattern of retardation in tumor growth was seen in shRNA group compared to scRNA group, but this difference was not statistically significant. In conclusion, we propose that the NRF2 signaling might be a molecular target to repress tumor growth and enhance cytotoxic effects of anticancer agent in cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Benhar, M., Dalyot, I., Engelberg, D., and Levitzki, A., Enhanced ROS production in oncogenically transformed cells potentiates c-Jun N-terminal kinase and p38 mitogen-activated protein kinase activation and sensitization to genotoxic stress. Mol. Cell. Biol., 21, 6913–6926 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Bracht, K., Boubakari, Grunert, R., and Bednarski, P. J., Correlations between the activities of 19 anti-tumor agents and the intracellular glutathione concentrations in a panel of 14 human cancer cell lines: comparisons with the National Cancer Institute data. Anticancer Drugs, 17, 41–51 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Carew, J. S. and Huang, P., Mitochondrial defects in cancer. Mol. Cancer, 1, 9 (2002).

    Article  PubMed  Google Scholar 

  • Carmichael, J., DeGraff, W. G., Gazdar, A. F., Minna, J. D., and Mitchell, J. B., Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of chemo-sensitivity testing. Cancer Res., 47, 936–942 (1987).

    CAS  PubMed  Google Scholar 

  • Cho, J. M., Manandhar, S., Lee, H. R., Park, H. M., and Kwak, M. K., Role of the Nrf2-antioxidant system in cytotoxicity mediated by anticancer cisplatin: implication to cancer cell resistance. Cancer Lett., 260, 96–108 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Cullinan, S. B., Gordan, J. D., Jin, J., Harper, J. W. and Diehl, J. A., The Keap1-BTB protein is an adaptor that bridges Nrf2 to a Cul3-based E3 ligase: oxidative stress sensing by a Cul3-Keap1 ligase. Mol. Cell. Biol., 24, 8477–8486 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Friesen, C., Kiess, Y., and Debatin, K. M., A critical role of glutathione in determining apoptosis sensitivity and resistance in leukemia cells. Cell Death Differ., 11Suppl 1, S73–85 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Godwin, A. K., Meister, A., O’Dwyer, P. J., Huang, C. S., Hamilton, T. C., and Anderson, M. E., High resistance to cisplatin in human ovarian cancer cell lines is associated with marked increase of glutathione synthesis. Proc. Natl. Acad. Sci. U S A, 89, 3070–3074 (1992).

    Article  CAS  PubMed  Google Scholar 

  • Griffith, O. W., Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal. Biochem., 106, 207–212 (1980).

    Article  CAS  PubMed  Google Scholar 

  • Hlavata, L., Aguilaniu, H., Pichova, A., and Nystrom, T., The oncogenic RAS2(val19) mutation locks respiration, independently of PKA, in a mode prone to generate ROS. EMBO J., 22, 3337–3345 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Homma, S., Ishii, Y., Morishima, Y., Yamadori, T., Matsuno, Y., Haraguchi, N., Kikuchi, N., Satoh, H., Sakamoto, T., Hizawa, N., Itoh, K., and Yamamoto, M., Nrf2 enhances cell proliferation and resistance to anticancer drugs in human lung cancer. Clin. Cancer Res., 15, 3423–3432 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Hussain, S. P., Hofseth, L. J., and Harris, C. C., Radical causes of cancer. Nat. Rev. Cancer, 3, 276–285 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Ikeda, K., Miura, K., Himeno, S., Imura, N., and Naganuma, A., Glutathione content is correlated with the sensitivity of lines of PC12 cells to cisplatin without a corresponding change in the accumulation of platinum. Mol. Cell. Biochem., 219, 51–56 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Ishii, T., Itoh, K., Takahashi, S., Sato, H., Yanagawa, T., Katoh, Y., Bannai, S., and Yamamoto, M., Transcription factor Nrf2 coordinately regulates a group of oxidative stress-inducible genes in macrophages. J. Biol. Chem., 275, 16023–16029 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Itoh, K., Chiba, T., Takahashi, S., Ishii, T., Igarashi, K., Katoh, Y., Oyake, T., Hayashi, N., Satoh, K., Hatayama, I., Yamamoto, M., and Nabeshima, Y., An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem. Biophys. Res. Commun., 236, 313–322 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Kalyanaraman, B., Joseph, J., Kalivendi, S., Wang, S., Konorev, E., and Kotamraju, S., Doxorubicin-induced apoptosis: implications in cardiotoxicity. Mol. Cell. Biochem., 234–235, 119–124 (2002).

    Article  PubMed  Google Scholar 

  • Kotlo, K. U., Yehiely, F., Efimova, E., Harasty, H., Hesabi, B., Shchors, K., Einat, P., Rozen, A., Berent, E., and Deiss, L. P., Nrf2 is an inhibitor of the Fas pathway as identified by Achilles’ Heel Method, a new function-based approach to gene identification in human cells. Oncogene., 22, 797–806 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Kwak, M. K., Itoh, K., Yamamoto, M., Sutter, T. R., and Kensler, T. W., Role of transcription factor Nrf2 in the induction of hepatic phase 2 and antioxidative enzymes in vivo by the cancer chemoprotective agent, 3H-1, 2-dimethiole-3-thione. Mol. Med., 7, 135–145 (2001).

    CAS  PubMed  Google Scholar 

  • Lewis, A. D., Hayes, J. D., and Wolf, C. R., Glutathione and glutathione-dependent enzymes in ovarian adenocarcinoma cell lines derived from a patient before and after the onset of drug resistance: intrinsic differences and cell cycle effects. Carcinogenesis, 9, 1283–1287 (1988).

    Article  CAS  PubMed  Google Scholar 

  • Li, W. and Kong, A. N., Molecular mechanisms of Nrf2-mediated antioxidant response. Mol. Carcinog., 48, 91–104 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Meurette, O., Lefeuvre-Orfila, L., Rebillard, A., Lagadic-Gossmann, D., and Dimanche-Boitrel, M. T., Role of intracellular glutathione in cell sensitivity to the apoptosis induced by tumor necrosis factor {alpha}-related apoptosisinducing ligand/anticancer drug combinations. Clin. Cancer Res., 11, 3075–3083 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Minotti, G., Menna, P., Salvatorelli, E., Cairo, G., and Gianni, L., Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol. Rev., 56, 185–229 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Morito, N., Yoh, K., Itoh, K., Hirayama, A., Koyama, A., Yamamoto, M., and Takahashi, S., Nrf2 regulates the sensitivity of death receptor signals by affecting intracellular glutathione levels. Oncogene, 22, 9275–9281 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Mulcahy, R. T., Wartman, M. A., Bailey, H. H., and Gipp, J. J., Constitutive and beta-naphthoflavone-induced expression of the human gamma-glutamylcysteine synthetase heavy subunit gene is regulated by a distal antioxidant response element/TRE sequence. J. Biol. Chem., 272, 7445–7454 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Nguyen, T., Nioi, P., and Pickett, C. B., The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. J. Biol. Chem., 284, 13291–13295 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Nioi, P. and Nguyen, T., A mutation of Keap1 found in breast cancer impairs its ability to repress Nrf2 activity. Biochem. Biophys. Res. Commun., 362, 816–821 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Ohta, T., Iijima, K., Miyamoto, M., Nakahara, I., Tanaka, H., Ohtsuji, M., Suzuki, T., Kobayashi, A., Yokota, J., Sakiyama, T., Shibata, T., Yamamoto, M., and Hirohashi, S., Loss of Keap1 function activates Nrf2 and provides advantages for lung cancer cell growth. Cancer Res., 68, 1303–1309 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Padmanabhan, B., Tong, K. I., Ohta, T., Nakamura, Y., Scharlock, M., Ohtsuji, M., Kang, M. I., Kobayashi, A., Yokoyama, S., and Yamamoto, M., Structural basis for defects of Keap1 activity provoked by its point mutations in lung cancer. Mol. Cell, 21, 689–700 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Reddy, N. M., Kleeberger, S. R., Bream, J. H., Fallon, P. G., Kensler, T. W., Yamamoto, M., and Reddy, S. P., Genetic disruption of the Nrf2 compromises cell-cycle progression by impairing GSH-induced redox signaling. Oncogene., 27, 5821–5832 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Reddy, N. M., Kleeberger, S. R., Cho, H. Y., Yamamoto, M., Kensler, T. W., Biswal, S., and Reddy, S. P., Deficiency in Nrf2-GSH signaling impairs type II cell growth and enhances sensitivity to oxidants. Am. J. Respir. Cell Mol. Biol., 37, 3–8 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Shibata, T., Kokubu, A., Gotoh, M., Ojima, H., Ohta, T., Yamamoto, M., and Hirohashi, S., Genetic alteration of Keap1 confers constitutive Nrf2 activation and resistance to chemotherapy in gallbladder cancer. Gastroenterology, 135, 1358–1368, 1368 e1351–1354 (2008a).

    Article  CAS  PubMed  Google Scholar 

  • Shibata, T., Ohta, T., Tong, K. I., Kokubu, A., Odogawa, R., Tsuta, K., Asamura, H., Yamamoto, M., and Hirohashi, S., Cancer related mutations in NRF2 impair its recognition by Keap1-Cul3 E3 ligase and promote malignancy. Proc. Natl. Acad. Sci. U S A, 105, 13568–13573 (2008b).

    Article  CAS  PubMed  Google Scholar 

  • Shim, G. S., Manandhar, S., Shin, D. H., Kim, T. H., and Kwak, M. K., Acquisition of doxorubicin resistance in ovarian carcinoma cells accompanies activation of the NRF2 pathway. Free Radic. Biol. Med., 47, 1619–1631 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Singh, A., Boldin-Adamsky, S., Thimmulappa, R. K., Rath, S. K., Ashush, H., Coulter, J., Blackford, A., Goodman, S. N., Bunz, F., Watson, W. H., Gabrielson, E., Feinstein, E., and Biswal, S., RNAi-mediated silencing of nuclear factor erythroid-2-related factor 2 gene expression in non-small cell lung cancer inhibits tumor growth and increases efficacy of chemotherapy. Cancer Res., 68, 7975–7984 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Singh, A., Misra, V., Thimmulappa, R. K., Lee, H., Ames, S., Hoque, M. O., Herman, J. G., Baylin, S. B., Sidransky, D., Gabrielson, E., Brock, M. V., and Biswal, S., Dysfunctional KEAP1-NRF2 interaction in non-small-cell lung cancer. PLoS Med., 3, e420 (2006).

    Article  PubMed  Google Scholar 

  • Soini, Y., Napankangas, U., Jarvinen, K., Kaarteenaho-Wiik, R., Paakko, P., and Kinnula, V. L., Expression of gamma-glutamyl cysteine synthetase in nonsmall cell lung carcinoma. Cancer, 92, 2911–2919 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Stacy, D. R., Ely, K., Massion, P. P., Yarbrough, W. G., Hallahan, D. E., Sekhar, K. R., and Freeman, M. L., Increased expression of nuclear factor E2 p45-related factor 2 (NRF2) in head and neck squamous cell carcinomas. Head Neck, 28, 813–818 (2006).

    Article  PubMed  Google Scholar 

  • Wang, X. J., Hayes, J. D., and Wolf, C. R., Generation of a stable antioxidant response element-driven reporter gene cell line and its use to show redox-dependent activation of nrf2 by cancer chemotherapeutic agents. Cancer Res., 66, 10983–10994 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Wild, A. C. and Mulcahy, R. T., Regulation of gammaglutamylcysteine synthetase subunit gene expression: insights into transcriptional control of antioxidant defenses. Free Radic. Res., 32, 281–301 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Xie, T. and Jaiswal, A. K., AP-2-mediated regulation of human NAD(P)H: quinone oxidoreductase 1 (NQO1) gene expression. Biochem. Pharmacol., 51, 771–778 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Yao, K. S., Godwin, A. K., Johnson, S. W., Ozols, R. F., O’Dwyer, P. J., and Hamilton, T. C., Evidence for altered regulation of gamma-glutamylcysteine synthetase gene expression among cisplatin-sensitive and cisplatin-resistant human ovarian cancer cell lines. Cancer Res., 55, 4367–4374 (1995).

    CAS  PubMed  Google Scholar 

  • Zhang, K., Yang, E. B., Wong, K. P., and Mack, P., GSH, GSH-related enzymes and GS-X pump in relation to sensitivity of human tumor cell lines to chlorambucil and adriamycin. Int. J. Oncol., 14, 861–867 (1999).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mi-Kyoung Kwak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manandhar, S., Lee, S. & Kwak, MK. Effect of stable inhibition of NRF2 on doxorubicin sensitivity in human ovarian carcinoma OV90 cells. Arch. Pharm. Res. 33, 717–726 (2010). https://doi.org/10.1007/s12272-010-0511-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-010-0511-z

Key words

Navigation