Skip to main content

Advertisement

Log in

Guidelines for the Isolation and Characterization of Murine Vascular Smooth Muscle Cells. A Report from the International Society of Cardiovascular Translational Research

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Vascular smooth muscle cells (VSMCs) play important roles in cardiovascular disorders and biology. Outlined in this paper is a step-by-step procedure for isolating aortic VSMCs from adult C57BL6J male mice by enzymatic digestion of the aorta using collagenase. The plating, culturing, and subculturing of the isolated cells are discussed in detail along with techniques to characterize VSMC phenotype by gene expression and immunofluorescence. Traction force microscopy was used to characterize contractility of single subcultured VSMCs at baseline.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

Acta2:

Smooth muscle α-actin

APS:

Ammonium persulfate

Cald1:

Caldesmon1

Cnn1:

Calponin1

EdU:

5-Ethynyl-2′-deoxyuridine

FN:

Fibronectin

Myh11:

Smooth muscle myosin heavy chain

P1:

Passage 1

P2:

Passage 2

PA:

Polyacrylamide

PDMS:

Polydimethylsiloxane

sm22α (Tagln):

Smooth muscle22α (also known as Transgelin (Tagln))

Smtn:

Smoothelin

TFM:

Traction force microscopy

TEMED:

Tetramethylethylenediamine

VSMC:

Vascular smooth muscle cell

References

  1. Chamley, J. H., Campbell, G. R., McConnell, J. D., & Groschel-Stewart, U. (1977). Comparison of vascular smooth muscle cells from adult human, monkey and rabbit in primary culture and in subculture. Cell and Tissue Research, 177(4), 503–522.

    CAS  PubMed  Google Scholar 

  2. Firulli, A. B., Han, D., Kelly-Roloff, L., Koteliansky, V. E., Schwartz, S. M., Olson, E. N., & Miano, J. M. (1998). A comparative molecular analysis of four rat smooth muscle cell lines. In Vitro Cellular and Developmental Biology - Animal, 34(3), 217–226.

    Article  CAS  PubMed  Google Scholar 

  3. Lemire, J. M., Covin, C. W., White, S., Giachelli, C. M., & Schwartz, S. M. (1994). Characterization of cloned aortic smooth muscle cells from young rats. American Journal of Pathology, 144(5), 1068–1081.

    PubMed Central  CAS  PubMed  Google Scholar 

  4. Ross, R. (1971). The smooth muscle cell. II. Growth of smooth muscle in culture and formation of elastic fibers. Journal of Cell Biology, 50(1), 172–186.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Thyberg, J. (1996). Differentiated properties and proliferation of arterial smooth muscle cells in culture. International Review of Cytology, 169, 183–265.

    Article  CAS  PubMed  Google Scholar 

  6. Owens, G. K., Kumar, M. S., & Wamhoff, B. R. (2004). Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiological Reviews, 84(3), 767–801.

    Article  CAS  PubMed  Google Scholar 

  7. Somlyo, A. P., & Somlyo, A. V. (2003). Ca2+ sensitivity of smooth muscle and nonmuscle myosin II: modulated by G proteins, kinases, and myosin phosphatase. Physiological Reviews, 83(4), 1325–1358.

    Article  CAS  PubMed  Google Scholar 

  8. Thomas, W. A., Florentin, R. A., Reiner, J. M., Lee, W. M., & Lee, K. T. (1976). Alterations in population dynamics of arterial smooth muscle cells during atherogenesis. IV. Evidence for a polyclonal origin of hypercholesterolemic diet-induced atherosclerotic lesions in young swine. Experimental and Molecular Pathology, 24(2), 244–260.

    Article  CAS  PubMed  Google Scholar 

  9. Frid, M. G., Moiseeva, E. P., & Stenmark, K. R. (1994). Multiple phenotypically distinct smooth muscle cell populations exist in the adult and developing bovine pulmonary arterial media in vivo. Circulation Research, 75(4), 669–681.

    Article  CAS  PubMed  Google Scholar 

  10. Champy, C. (1913). Quelques resultats de la methode de culture des tissus. I. Generalities. II. Le muscle lisse. Arch Zool Exp Gen, 53, 42–51.

    Google Scholar 

  11. Ray, J. L., Leach, R., Herbert, J. M., & Benson, M. (2001). Isolation of vascular smooth muscle cells from a single murine aorta. Methods in Cell Science, 23(4), 185–188.

    Article  CAS  PubMed  Google Scholar 

  12. Chamley-Campbell, J., Campbell, G. R., & Ross, R. (1979). The smooth muscle cell in culture. Physiological Reviews, 59(1), 1–61.

    CAS  PubMed  Google Scholar 

  13. Thyber, J., Palmberg, L., Nilsson, J., Ksiazek, T., & Sjolund, M. (1983). Phenotype modulation in primary cultures of arterial smooth muscle cells. On the role of platelet-derived growth factor. Differentiation, 25(2), 156–167.

    Google Scholar 

  14. Do, K. H., et al. (2009). Angiotensin II-induced aortic ring constriction is mediated by phosphatidylinositol 3-kinase/L-type calcium channel signaling pathway. Experimental and Molecular Medicine, 41, 569–576.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Gohla, A., Schultz, G., & Offermanns, S. (2000). Role for G12/G13 in agonist-induced vascular smooth muscle cell contraction. Circulation Research, 87(3), 221–227.

    Article  CAS  PubMed  Google Scholar 

  16. Cain, A. E., Tanner, D. M., & Khalil, R. A. (2002). Endothelin-1-induced enhancement of coronary smooth muscle contraction via MAPK-dependent and MAPK-independent [Ca2+]i sensitization pathways. Hypertension, 39(2), 543–549.

    Article  CAS  PubMed  Google Scholar 

  17. Wynne, B. M., Chiao, C. W., & Webb, R. C. (2009). Vascular smooth muscle cell signaling mechanisms for contraction to angiotensin II and endothelin-1. Journal of the American Society of Hypertension, 3(2), 84–95.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Van Nueten, J. M., Janssens, W. J., & Vanhoutte, P. M. (1985). Serotonin and vascular reactivity. Pharmacological Research Communications, 17(7), 585–608.

    Article  PubMed  Google Scholar 

  19. Watts, S. W. (1996). Serotonin activates the mitogen-activated protein kinase pathway in vascular smooth muscle: use of the mitogen-activated protein kinase kinase inhibitor PD098059. Journal of Pharmacology and Experimental Therapeutics, 279(3), 1541–1550.

    CAS  PubMed  Google Scholar 

  20. Berk, B. C., Brock, T. A., Webb, R. C., Taubman, M. B., Atkinson, W. J., Gimbrone, M. A., & Alexander, R. W. (1985). Epidermal growth factor, a vascular smooth muscle mitogen, induces rat aortic contraction. Journal of Clinical Investigation, 75(3), 1083–1086.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Polte, T. R., Eichler, G. S., Wang, N., & Ingber, D. E. (2004). Extracellular matrix controls myosin light chain phosphorylation and cell contractility through modulation of cell shape and cytoskeletal prestress. American Journal of Physiology Cell Physiology, 286, C518–C528.

    Article  CAS  PubMed  Google Scholar 

  22. Ramachandran, A., et al. (2013). JunB mediates basal- and TGFβ1-induced smooth muscle cell contractility. PloS One, 8(1), e53430.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Balasubramanian, L., Lo, C.-M., Sham, J. S. K., & Yip, K.-P. (2013). Remanent cell traction force in renal vascular smooth muscle cells induced by integrin-mediated mechanotransduction. American Journal of Physiology Cell Physiology, 304, C382–C391.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Chen, J., Li, H., SundarRaj, N., & Wang, J. H. C. (2007). Alpha-smooth muscle actin expression enhances cell traction force. Cell Motility and the Cytoskeleton, 64(4), 248–257.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the University of Minnesota Genomics Core for single-cell RNA sequencing.

Source of Funding

The sources of funding are from DK54733 (LW), DK60521 (LW), LHI Innovation Grant (LW, JLH), and the Lindahl Foundation (JLH).

The Use of Laboratory Animals

All institutional and national guidelines for the care and use of laboratory animals were followed and approved by the appropriate institutional committees.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer L. Hall.

Additional information

Associate Editor Lorrie Kirshenbaum oversaw the review of this article

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 87 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adhikari, N., Shekar, K.C., Staggs, R. et al. Guidelines for the Isolation and Characterization of Murine Vascular Smooth Muscle Cells. A Report from the International Society of Cardiovascular Translational Research. J. of Cardiovasc. Trans. Res. 8, 158–163 (2015). https://doi.org/10.1007/s12265-015-9616-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-015-9616-6

Keywords

Navigation