Skip to main content

Role of Endothelial Cell–Cell Junctions in Endothelial Permeability

  • Protocol
  • First Online:
Permeability Barrier

Part of the book series: Methods in Molecular Biology ((MIMB,volume 763))

Abstract

The endothelial barrier separates the inner blood compartment from the surrounding tissues. At the molecular level, adhesion molecules accumulate at the endothelial cell–cell junction and contribute to maintain vascular integrity. An increase in the endothelial permeability is frequently associated with the deregulation of junctional adhesion. Here, we review how to evaluate the in vitro functions of endothelial cell–cell contacts. We focus this chapter on cell imagery and biochemical analysis of VE-cadherin, the main constituent of adherens junction, and we also provide description of endothelial cell models and methods for studying tight junctions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mege, R. M., Gavard, J., and Lambert, M. (2006) Regulation of cell-cell junctions by the cytoskeleton. Curr Opin Cell Biol 18, 541–548

    Article  PubMed  CAS  Google Scholar 

  2. Tsukita, S., Furuse, M., and Itoh, M. (2001) Multifunctional strands in tight junctions. Nat Rev Mol Cell Biol 2, 285–293

    Article  PubMed  CAS  Google Scholar 

  3. Dejana, E. (2004) Endothelial cell-cell junctions: happy together. Nat Rev Mol Cell Biol 5, 261–270

    Article  PubMed  CAS  Google Scholar 

  4. Gavard, J. (2009) Breaking the VE-cadherin bonds. FEBS Lett 583, 1–6

    Article  PubMed  CAS  Google Scholar 

  5. Carmeliet, P. (2005) Angiogenesis in life, disease and medicine. Nature 438, 932–936

    Article  PubMed  CAS  Google Scholar 

  6. Vittet, D., Buchou, T., Schweitzer, A., Dejana, E., and Huber, P. (1997) Proc Natl Acad Sci U S A 94, 6273–6278

    Article  PubMed  CAS  Google Scholar 

  7. Carmeliet, P., Lampugnani, M. G., Moons, L., Breviario, F., Compernolle, V., Bono, F., Balconi, G., Spagnuolo, R., Oostuyse, B., Dewerchin, M., Zanetti, A., Angellilo, A., Mattot, V., Nuyens, D., Lutgens, E., Clotman, F., de Ruiter, M. C., Gittenberger-de Groot, A., Poelmann, R., Lupu, F., Herbert, J. M., Collen, D., and Dejana, E. (1999) Targeted deficiency or cytosolic truncation of the VE-cadherin gene in mice impairs VEGF-mediated endothelial survival and angiogenesis. Cell 98, 147–157

    Article  PubMed  CAS  Google Scholar 

  8. Weis, S. M., and Cheresh, D. A. (2005) Pathophysiological consequences of VEGF-induced vascular permeability. Nature 437, 497–504

    Article  PubMed  CAS  Google Scholar 

  9. Weis, S., Cui, J., Barnes, L., and Cheresh, D. (2004) Endothelial barrier disruption by VEGF-mediated Src activity potentiates tumor cell extravasation and metastasis. J Cell Biol 167, 223–229

    Article  PubMed  CAS  Google Scholar 

  10. Crosby, C. V., Fleming, P. A., Argraves, W. S., Corada, M., Zanetta, L., Dejana, E., and Drake, C. J. (2005) VE-cadherin is not required for the formation of nascent blood vessels but acts to prevent their disassembly. Blood 105, 2771–2776

    Article  PubMed  CAS  Google Scholar 

  11. Nitta, T., Hata, M., Gotoh, S., Seo, Y., Sasaki, H., Hashimoto, N., Furuse, M., and Tsukita, S. (2003) Size-selective loosening of the blood-brain barrier in claudin-5-deficient mice. J. Cell Biol. 161, 653–660

    Article  PubMed  CAS  Google Scholar 

  12. Taddei, A., Giampietro, C., Conti, A., Orsenigo, F., Breviario, F., Pirazzoli, V., Potente, M., Daly, C., Dimmeler, S., and Dejana, E. (2008) Endothelial adherens junctions control tight junctions by VE-cadherin-mediated upregulation of claudin-5. Nat Cell Biol 10, 923–934

    Article  PubMed  CAS  Google Scholar 

  13. Eliceiri, B. P., Paul, R., Schwartzberg, P. L., Hood, J. D., Leng, J., and Cheresh, D. A. (1999) Selective requirement for Src kinases during VEGF-induced angiogenesis and vascular permeability. Mol Cell 4, 915–924

    Article  PubMed  CAS  Google Scholar 

  14. Gavard, J., and Gutkind, J. S. (2006) VEGF controls endothelial-cell permeability by promoting the beta-arrestin-dependent endocytosis of VE-cadherin. Nat Cell Biol 8, 1223–1234

    Article  PubMed  CAS  Google Scholar 

  15. Stockton, R. A., Schaefer, E., and Schwartz, M. A. (2004) p21-activated kinase regulates endothelial permeability through modulation of contractility. J Biol Chem 279, 46621–46630

    Article  PubMed  CAS  Google Scholar 

  16. Tan, W., Palmby, T. R., Gavard, J., Amornphimoltham, P., Zheng, Y., and Gutkind, J. S. (2008) An essential role for Rac1 in endothelial cell function and vascular development. FASEB J. 22, 1829–1838

    Article  PubMed  CAS  Google Scholar 

  17. Gavard, J., Patel, V., and Gutkind, J. S. (2008) Angiopoietin-1 prevents VEGF-induced endothelial permeability by sequestering Src through mDia. Dev Cell 14, 25–36

    Article  PubMed  CAS  Google Scholar 

  18. Jones, C. A., London, N. R., Chen, H., Park, K. W., Sauvaget, D., Stockton, R. A., Wythe, J. D., Suh, W., Larrieu-Lahargue, F., Mukouyama, Y.-s., Lindblom, P., Seth, P., Frias, A., Nishiya, N., Ginsberg, M. H., Gerhardt, H., Zhang, K., and Li, D. Y. (2008) Robo4 stabilizes the vascular network by inhibiting pathologic angiogenesis and endothelial hyperpermeability. Nat Med 14, 448–453

    Google Scholar 

  19. Murakami, M., Nguyen, L. T., Zhang, Z. W., Moodie, K. L., Carmeliet, P., Stan, R. V., and Simons, M. (2008) The FGF system has a key role in regulating vascular integrity. J Clin Invest 118, 3355–3366

    Article  PubMed  CAS  Google Scholar 

  20. Ballabh, P., Braun, A., and Nedergaard, M. (2004) The blood-brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol Dis 16, 1–13

    Article  PubMed  CAS  Google Scholar 

  21. Wojciak-Stothard, B., Potempa, S., Eichholtz, T., and Ridley, A. J. (2001) Rho and Rac but not Cdc42 regulate endothelial cell permeability. J Cell Sci 114, 1343–1355

    PubMed  CAS  Google Scholar 

  22. Mehta, D., and Malik, A. B. (2006) Signaling mechanisms regulating endothelial permeability. Physiol Rev 86, 279–367

    Article  PubMed  CAS  Google Scholar 

  23. Rask-Madsen, C., and King, G. L. (2010) Kidney complications: factors that protect the diabetic vasculature. Nat Med 16, 40–41

    Article  PubMed  CAS  Google Scholar 

  24. Lalor, P. F., Lai, W. K., Curbishley, S. M., Shetty, S., and Adams, D. H. (2006) Human hepatic sinusoidal endothelial cells can be distinguished by expression of phenotypic markers related to their specialised functions in vivo. World J Gastroenterol 12, 5429–5439

    PubMed  CAS  Google Scholar 

  25. Marelli-Berg, F. M., Peek, E., Lidington, E. A., Stauss, H. J., and Lechler, R. I. (2000) Isolation of endothelial cells from murine tissue. J Immunol Methods 244, 205–215

    Article  PubMed  CAS  Google Scholar 

  26. Lal-Nag, M., and Morin, P. J. (2009) The claudins. Genome Biol 10, 235

    Article  PubMed  Google Scholar 

  27. Inai, T., Sengoku, A., Hirose, E., Iida, H., and Shibata, Y. (2009) Freeze-fracture electron microscopic study of tight junction strands in HEK293 cells and MDCK II cells expressing claudin-1 mutants in the second extracellular loop. Histochem Cell Biol 131, 681–690

    Article  PubMed  CAS  Google Scholar 

  28. Lampugnani, M. G., Orsenigo, F., Gagliani, M. C., Tacchetti, C., and Dejana, E. (2006) Vascular endothelial cadherin controls VEGFR-2 internalization and signaling from intracellular compartments. J. Cell Biol. 174, 593–604

    Article  PubMed  CAS  Google Scholar 

  29. Allport, J. R., Muller, W. A., and Luscinskas, F. W. (2000) Monocytes induce reversible focal changes in vascular endothelial cadherin complex during transendothelial migration under flow. J Cell Biol 148, 203–216

    Article  PubMed  CAS  Google Scholar 

  30. Gavard, J., Hou, X., Qu, Y., Masedunskas, A., Martin, D., Weigert, R., Li, X., and Gutkind, J. S. (2009) A role for a CXCR2/phosphatidylinositol 3-kinase gamma signaling axis in acute and chronic vascular permeability. Mol Cell Biol 29, 2469–2480

    Article  PubMed  CAS  Google Scholar 

  31. Alexander, J. S., Alexander, B. C., Eppihimer, L. A., Goodyear, N., Haque, R., Davis, C. P., Kalogeris, T. J., Carden, D. L., Zhu, Y. N., and Kevil, C. G. (2000) Inflammatory mediators induce sequestration of VE-cadherin in cultured human endothelial cells. Inflammation 24, 99–113

    Article  PubMed  CAS  Google Scholar 

  32. Dewi, B. E., Takasaki, T., and Kurane, I. (2008) Peripheral blood mononuclear cells increase the permeability of dengue virus-infected endothelial cells in association with downregulation of vascular endothelial cadherin. J Gen Virol 89, 642–652

    Article  PubMed  CAS  Google Scholar 

  33. Navaratna, D., McGuire, P. G., Menicucci, G., and Das, A. (2007) Proteolytic degradation of VE-cadherin alters the blood-retinal barrier in diabetes. Diabetes 56, 2380–2387

    Article  PubMed  CAS  Google Scholar 

  34. Edgell, C. J., McDonald, C. C., and Graham, J. B. (1983) Permanent cell line expressing human factor VIII-related antigen established by hybridization. Proc Natl Acad Sci U S A 80, 3734–3737

    Article  PubMed  CAS  Google Scholar 

  35. Weksler, B. B., Subileau, E. A., Perriere, N., Charneau, P., Holloway, K., Leveque, M., Tricoire-Leignel, H., Nicotra, A., Bourdoulous, S., Turowski, P., Male, D. K., Roux, F., Greenwood, J., Romero, I. A., and Couraud, P. O. (2005) Blood-brain ­barrier-specific ­properties of a human adult brain endothelial cell line. FASEB J., 9(13), 1872–1874

    Google Scholar 

  36. Esser, S., Lampugnani, M. G., Corada, M., Dejana, E., and Risau, W. (1998) Vascular endothelial growth factor induces VE-cadherin tyrosine phosphorylation in endothelial cells. J Cell Sci 111 (Pt 13), 1853–1865

    PubMed  CAS  Google Scholar 

  37. Xiao, K., Allison, D. F., Kottke, M. D., Summers, S., Sorescu, G. P., Faundez, V., and Kowalczyk, A. P. (2003) Mechanisms of VE-cadherin processing and degradation in microvascular endothelial cells. J Biol Chem 278, 19199–19208

    Article  PubMed  CAS  Google Scholar 

  38. Potter, M. D., Barbero, S., and Cheresh, D. A. (2005) Tyrosine Phosphorylation of VE-cadherin Prevents Binding of p120- and {beta}-Catenin and Maintains the Cellular Mesenchymal State. J. Biol. Chem. 280, 31906–31912

    Article  PubMed  CAS  Google Scholar 

  39. Wallez, Y., Cand, F., Cruzalegui, F., Wernstedt, C., Souchelnytskyi, S., Vilgrain, I., and Huber, P. (2007) Src kinase phosphorylates vascular endothelial-cadherin in response to vascular endothelial growth factor: identification of tyrosine 685 as the unique target site. Oncogene 26, 1067–1077

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julie Gavard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Le Guelte, A., Gavard, J. (2011). Role of Endothelial Cell–Cell Junctions in Endothelial Permeability. In: Turksen, K. (eds) Permeability Barrier. Methods in Molecular Biology, vol 763. Humana Press. https://doi.org/10.1007/978-1-61779-191-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-191-8_18

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-190-1

  • Online ISBN: 978-1-61779-191-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics