Skip to main content
Log in

Abstract

Biomarker testing in patients with heart failure (HF) is rapidly expanding. With high-quality research indicating its diagnostic and prognostic capabilities, biomarkers are excellent adjuncts to manage patients with HF. Their superiority lies mainly in their reflection of ongoing pathophysiological events at a cellular level. Monitoring biomarker levels has been shown to provide incremental information on the progression of disease, thus allowing to better tailor treatment and management. Several biomarkers have gained attention in the past decade and continuing research demonstrates the specificity of each biomarker to be used on its own or in combination to improve diagnostic accuracy. This review will provide an insight into the role of such biomarkers, which are widely studied in the setting of HF so as to delineate their role in diagnosing, prognosticating, and titrating HF therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. O’Connor, C. M., Abraham, W. T., Albert, N. M., et al. (2008). Predictors of mortality after discharge in patients hospitalized with heart failure: An analysis for the Organized Program to Initiate Lifesaving Treatment in Hospitalized Patients with Heart Failure (OPTIMIZE-HF). American Heart Journal, 156, 662–673.

    Article  PubMed  Google Scholar 

  2. Weintraub, N. L., Collins, S. P., Pang, P., et al. (2010). Acute heart failure syndromes: Emergency department presentation, treatment, and disposition: Current approaches and future aims. Circulation, 122, 1975–1996.

    Article  PubMed  Google Scholar 

  3. Fonarow, G. C., Heywood, J. T., Heidenreich, P. A., et al. (2007). Temporal trends in clinical characteristics, treatments and outcomes for heart failure hospitalizations, 2002 to 2004: Findings from Acute Decompensated Heart Failure National Registry (ADHERE). American Heart Journal, 153, 1021–1028.

    Article  PubMed  Google Scholar 

  4. Follath, F., Yilmaz, M. B., Delgado, J. F., et al. (2011). Clinical presentation, management and outcomes in the Acute Heart Failure Global Survey of Standard Treatment (ALARM-HF). Intensive Care Medicine, 37, 619–626.

    Article  PubMed  CAS  Google Scholar 

  5. Morrow, D. A., & De Lemos, J. A. (2007). Benchmarks for the assessment of novel cardiovascular biomarkers. Circulation, 115, 949–952.

    Article  PubMed  Google Scholar 

  6. Mukoyama, M., Nakao, K., Hosoda, K., et al. (1991). Brain natriuretic peptide as a novel cardiac hormone in humans. Evidence for an exquisite dual natriuretic peptide system, atrial natriuretic peptide and brain natriuretic peptide. The Journal of Clinical Investigation, 87, 1402–1412.

    Article  PubMed  CAS  Google Scholar 

  7. Sudoh, T., Kangawa, K., Minamino, N., & Matsuo, H. (1998). A new natriuretic peptide in the porcine brain. Nature, 332, 78–81.

    Article  Google Scholar 

  8. Yasue, H., Yoshimura, M., Sumida, H., Kikuta, K., Kugiyama, K., Jougasaki, M., et al. (1994). Localization and mechanism of secretion of B-type natriuretic peptide in comparison with those of A-type natriuretic peptide in normal subjects and patients with heart failure. Circulation, 90, 195–203.

    Article  PubMed  CAS  Google Scholar 

  9. Potter, L. R., Abbey-Hosch, S., & Dickey, D. M. (2006). Natriuretic peptides, their receptors, and cyclic guanosine monophosphate-dependent signaling functions. Endocrine Reviews, 25, 47–72.

    Google Scholar 

  10. Richards, A. M., & Troughton, R. (2012). Use of natriuretic peptides to guide and monitor heart failure therapy. Clinical Chemistry, 58, 67–71.

    Article  CAS  Google Scholar 

  11. Kim, H. N., & Januzzi, L. J., Jr. (2009). Natriuretic peptides testing for heart failure therapy guidance in the inpatient and outpatient setting. American Journal of Therapy, 16, 171–177.

    Article  Google Scholar 

  12. Kazanegra, R., Cheng, V., Garcia, A., Krishnaswamy, P., Gardetto, N., Clopton, P., et al. (2001). A rapid test for B-type natriuretic peptide correlates with falling wedge pressures in patients treated for decompensated heart failure: A pilot study. Journal of Cardiac Failure, 7, 21–29.

    Article  PubMed  CAS  Google Scholar 

  13. Maisel, A. S., Krishnaswamy, P., Nowak, R. M., McCord, J., Hollander, J. E., Duc, P., et al. (2002). Rapid measurement of B-type natriuretic peptide in the emergency diagnosis of heart failure. The New England Journal of Medicine, 347, 161–167.

    Article  PubMed  CAS  Google Scholar 

  14. McCullough, P. A., Nowak, R. M., McCord, J., Hollander, J. E., Herrmann, H. C., Steg, P. G., et al. (2002). B-type natriuretic peptide and clinical judgment in emergency diagnosis of heart failure: Analysis from Breathing Not Properly (BNP) Multinational Study. Circulation, 106, 416–422.

    Article  PubMed  Google Scholar 

  15. Maisel, A., Hollander, J. E., Guss, D., McCullough, P., Nowak, R., Green, G., et al. (2004). Primary results of the Rapid Emergency Department Heart Failure Outpatient Trial (REDHOT). A multicenter study of B-type natriuretic peptide levels, emergency department decision making, and outcomes in patients presenting with shortness of breath. Journal of the American College of Cardiology, 44, 1328–1333.

    Google Scholar 

  16. Brenden, C. K., Hollander, J. E., Guss, D., McCullough, P. A., Nowak, R., Green, G., et al. (2006). Gray zone BNP levels in heart failure patients in the emergency department: Results from the Rapid Emergency Department Heart Failure Outpatient Trial (REDHOT) multicenter study. American Heart Journal, 15(5), 1006–1011.

    Article  CAS  Google Scholar 

  17. Fonarow, G. C., Peacock, W. F., Phillips, C. O., Givertz, M. M., Lopatin, M., et al. (2007). Admission B-type natriuretic peptide levels and in-hospital mortality in acute decompensated heart failure. Journal of the American College of Cardiology, 49, 1943–1950.

    Article  PubMed  CAS  Google Scholar 

  18. Berger, R., Huelsman, M., Strecker, K., Bojic, A., Moser, P., Stanek, B., et al. (2002). B-type natriuretic peptide predicts sudden death in patients with chronic heart failure. Circulation, 105, 2392–2397.

    Article  PubMed  Google Scholar 

  19. Verdiani, V., Nozzoli, C., Bacci, F., Cecchin, A., Rutili, M. S., Paladini, S., et al. (2005). Pre-discharge B-type natriuretic peptide predicts early recurrence of decompensated heart failure in patients admitted to a general medical unit. European Journal of Heart Failure, 7, 566–571.

    Article  PubMed  CAS  Google Scholar 

  20. Logeart, D., Thabut, G., Jourdain, P., Chavelas, C., Beyne, P., Beauvais, F., et al. (2004). Predischarge B-type natriuretic peptide assay for identifying patients at high risk of re-admission after decompensated heart failure. Journal of the American College of Cardiology, 43, 635–641.

    Article  PubMed  CAS  Google Scholar 

  21. Valle, R., Aspromonte, N., Giovinazzo, P., Carbonieri, E., Chiatto, M., di Tano, G., et al. (2008). B-type natriuretic peptide-guided treatment for predicting outcome in patients hospitalized in sub-intensive care unit with acute heart failure. Journal of Cardiac Failure, 14, 219–224.

    Article  PubMed  CAS  Google Scholar 

  22. Hunt, P. J., Richards, A. M., Nicholls, M. G., Tangle, T. G., Doughty, R. N., & Espiner, E. A. (1997). Immunoreactive amino-terminal pro-brain natriuretic peptide (NT-PROBNP): A new marker of cardiac impairment. Clinical Endocrinology, 3, 287–296.

    Article  Google Scholar 

  23. Nielsen, L. S., Svanegaard, J., Klitgaard, N. A., & Egeblad, H. (2004). N-terminal pro-brain natriuretic peptide for discriminating between cardiac and non-cardiac dyspnoea. European Journal of Heart Failure, 6, 63–70.

    Article  PubMed  CAS  Google Scholar 

  24. Richards, A. M., Doughty, R., Nicholls, M. G., MacMahon, S., Sharpe, N., & Murphy, J. (2001). Plasma N-terminal pro-brain natriuretic peptide and adrenomedullin: Prognostic utility and prediction of benefit from carvedilol in chronic ischemic left ventricular dysfunction. Australia–New Zealand Heart Failure Group. Journal of the American College of Cardiology, 37, 1781–1787.

    Article  PubMed  CAS  Google Scholar 

  25. Groenning, B. A., Raymond, I., Hildereandt, P. R., Nilsson, J. C., Baumann, M., & Pedersen, F. (2004). Diagnostic and prognostic evaluation of left ventricular systolic heart failure by plasma N-terminal pro-brain natriuretic peptide concentrations in a large sample of the general population. Heart, 90, 297–303.

    Article  PubMed  CAS  Google Scholar 

  26. Moe, G. W., Howlett, J., Januzzi, J. L., Zowall, H., et al. (2007). N-terminal pro-B-type natriuretic peptide testing improves the management of patients with suspected acute heart failure: Primary results of the Canadian prospective randomized multicenter IMPROVE-CHF study. Circulation, 115, 3103–3110.

    Article  PubMed  CAS  Google Scholar 

  27. Hartmann, F., Packer, M., Coats, A. J., Fowler, M. B., Krum, H., Mohacsi, P., et al. (2004). Prognostic impact of plasma N-terminal pro-brain natriuretic peptide in severe chronic congestive heart failure: A substudy of the Carvedilol Prospective Randomized Cumulative Survival (COPERNICUS) trial. Circulation, 110, 1780–1786.

    Article  PubMed  CAS  Google Scholar 

  28. Bettencourt, P., Azevedo, A., Pimenta, J., Frioes, F., Ferreira, S., & Ferreira, A. (2004). N-terminal pro-brain natriuretic peptide predicts outcome after hospital discharge in heart failure patients. Circulation, 110, 2168–2174.

    Article  PubMed  CAS  Google Scholar 

  29. Gardner, R. S., Chong, K. S., Morton, J. J., & McDonagh, T. A. (2007). A change in N-terminal pro-brain natriuretic peptide is predictive of outcome in patients with advanced heart failure. European Journal of Heart Failure, 9, 266–271.

    Article  PubMed  CAS  Google Scholar 

  30. Gardner, R. S., Ozalp, F., Murday, A. J., Robb, S. D., & McDonagh, T. A. (2003). N-terminal pro-brain natriuretic peptide. A new gold standard in predicting mortality in patients with advanced heart failure. European Heart Journal, 24, 1735–1743.

    Article  PubMed  CAS  Google Scholar 

  31. Mir, T. S., Marohn, S., Laer, S., Eiselt, M., Grollmus, O., & Weil, J. (2002). Plasma concentrations of N-terminal pro-brain natriuretic peptide in control children from the neonatal to adolescent period and in children with congestive heart failure. Pediatrics, 110, e76.

    Article  PubMed  Google Scholar 

  32. Lainchbury, J. G., Troughton, R. W., Strangman, K. M., Frampton, C. M., Pilbrow, A., Yandle, T. G., et al. (2009). N-terminal pro-B-type natriuretic peptide-guided treatment for chronic heart failure: Results from the BATTLESCARRED (NT-proBNP-Assisted Treatment To Lessen Serial Cardiac Readmissions and Death) trial. Journal of the American College of Cardiology, 55, 53–60.

    Article  PubMed  CAS  Google Scholar 

  33. Waldo, S. W., Beede, J., Isakson, S., Villard-Saussine, S., Fareh, J., Clopton, P., et al. (2008). Pro-B-type natriuretic peptide levels in acute decompensated heart failure. Journal of the American College of Cardiology, 51, 1874–1882.

    Article  PubMed  CAS  Google Scholar 

  34. Lainchbury, J. G., Campbell, E., Frampton, C. M., Tandle, T. G., Nicholls, G., & Richards, A. M. (2003). Brain natriuretic peptide and N-terminal brain natriuretic peptide in the diagnosis of heart failure in patients with acute shortness of breath. Journal of the American College of Cardiology, 42, 728–735.

    Article  PubMed  CAS  Google Scholar 

  35. Masson, S., Latini, R., Anand, I. S., Vago, T., Angelici, L., Barlera, S., et al. (2006). Direct comparison of B-type natriuretic peptide (BNP) and amino-terminal proBNP in a large population of patients with chronic and symptomatic heart failure: The Valsartan Heart Failure (Val-HeFT) data. Clinical Chemistry, 52, 1528–1538.

    Article  PubMed  CAS  Google Scholar 

  36. Pemberton, C. J., Johnson, M. L., Tangle, T. G., & Espiner, E. A. (2000). Deconvolution analysis of cardiac natriuretic peptides during acute volume overload. Hypertension, 36, 355–359.

    Article  PubMed  CAS  Google Scholar 

  37. Mair, J., Falkensammer, G., Poelzl, G., Hammerer-Lercher, A., Griesmacher, A., & Pachinger, O. (2007). B-type natriuretic peptide (BNP) is more sensitive to rapid hemodynamic changes in acute heart failure than N-terminal proBNP. Clinica Chimica Acta, 379(1–2), 163–166.

    Article  CAS  Google Scholar 

  38. Kragelund, C., & Omland, T. (2005). B-type natriuretic peptide (BNP) or N-terminal-proBNP for the diagnosis of heart failure: Which peptide is the better choice? Scandinavian Journal of Clinical and Laboratory Investigation, 65, 629–632.

    Article  PubMed  CAS  Google Scholar 

  39. Mueller, T., Gegenhuber, A., Poelz, W., & Haltmayer, M. (2005). Diagnostic accuracy of B type natriuretic peptide and amino terminal proBNP in the emergency diagnosis of heart failure. Heart, 91, 606–612.

    Article  PubMed  CAS  Google Scholar 

  40. Maisel, A. S., et al. (2010). Mid-region pro-hormone markers for diagnosis and prognosis in acute dyspnea: Results from the BACH (Biomarkers in Acute Heart Failure) trial. Journal of the American College of Cardiology, 55, 2062–2076.

    Article  PubMed  CAS  Google Scholar 

  41. Morgenthaler, N. G., Struck, J., Thomas, B., & Bergmann, A. (2004). Immunoluminometric assay for the midregion of pro-atrial natriuretic peptide in human plasma. Clinical Chemistry, 50, 234–236.

    Article  PubMed  CAS  Google Scholar 

  42. Potocki, M., Breidthardt, T., Reichlin, T., et al. (2010). Comparison of midregional pro-atrial natriuretic peptide with N-terminal pro-B-type natriuretic peptide in the diagnosis of heart failure. Journal of Internal Medicine, 267(1), 119–129.

    Article  PubMed  CAS  Google Scholar 

  43. Moertl, D., et al. (2009). Comparison of midregional pro-atrial and B-type natriuretic peptides in chronic heart failure. Journal of the American College of Cardiology, 53, 1783–1790.

    Article  PubMed  CAS  Google Scholar 

  44. Eto, T. (2001). A review of the biological properties and clinical implications of adrenomedullin and proadrenomedullin N-terminal 20 peptide (PAMP), hypotensive and vasodilating peptides. Peptides, 22, 1693–1711.

    Article  PubMed  CAS  Google Scholar 

  45. Beltowski, J., & Jamroz, A. (2004). Adrenomedullin—What do we know 10 years since its discovery? Polish Journal of Pharmacology, 56, 5–27.

    PubMed  CAS  Google Scholar 

  46. Jougasaki, M., & Burnett, J. C., Jr. (2000). Adrenomedullin: Potential in physiology and pathophysiology. Life Science, 66(10), 855–872.

    Article  CAS  Google Scholar 

  47. Maisel, A., Mueller, C., Nowak, R., et al. (2010). Mid-region pro-hormone markers for diagnosis and prognosis in acute dyspnea: Results from the BACH (Biomarkers in Acute Heart Failure) trial. Journal of the American College of Cardiology, 55(19), 2062–2076.

    Article  PubMed  CAS  Google Scholar 

  48. Morgenthaler, N. G., Struck, J., Alonso, C., et al. (2005). Measurement of midregional proadrenomedullin in plasma with an immunoluminometric assay. Clinical Chemistry, 51, 1823–1829.

    Article  PubMed  CAS  Google Scholar 

  49. Klip, I. T., Voors, A. A., Anker, S. D., Hillege, H. L., Struck, J., Squire, I., et al. (2011). Prognostic value of mid-regional pro-adrenomedullin in patients with HF after an acute myocardial infarction. Heart, 97, 892–898.

    Article  PubMed  CAS  Google Scholar 

  50. Peacock, W. F., Nowak, R., Christenson, R., DiSomma, S., Neath, S. X., Hartmann, O., et al. (2011). Short-term mortality risk in emergency department acute heart failure. Academic Emergency Medicine, 18(9), 947–958.

    Article  PubMed  Google Scholar 

  51. Haehling, S., Filippatos, G., Papassotiriou, J., et al. (2010). Mid-regional pro-adrenomedullin as a novel predictor of mortality in patients with chronic heart failure. European Journal of Heart Failure, 12, 484–491.

    Article  Google Scholar 

  52. Dhillon, O., Khan, S., Narayan, H., et al. (2010). Prognostic value of mid-regional pro-adrenomedullin levels taken on admission and discharge in non-ST-elevation myocardial infarction: The LAMP (Leicester Acute Myocardial Infarction Peptide) II Study. Journal of the American College of Cardiology, 56, 125–133.

    Article  PubMed  CAS  Google Scholar 

  53. Shah, R. V., Truong, Q. A., Gaggin, H. K., Pfannkuche, J., Hartmann, O., & Januzzi, J. L., Jr. (2012). Mid-regional pro-atrial natriuretic peptide and pro-adrenomedullin testing for the diagnostic and prognostic evaluation of patients with acute dyspnoea. European Heart Journal, 33(17), 2197–2205.

    Article  PubMed  CAS  Google Scholar 

  54. Haider, K. H., & Stimson, W. H. (1993). Cardiac troponin-I: A biochemical marker for cardiac cell necrosis. Disease Markers, 11(5–6), 205–215.

    PubMed  CAS  Google Scholar 

  55. Missov, E., Calzolari, C., & Pau, B. (1997). Circulating cardiac troponin I in severe congestive heart failure. Circulation, 96, 2953–2958.

    Article  PubMed  CAS  Google Scholar 

  56. Vecchia, L. L., Mezzena, G., Zanolla, L., Paccanaro, M., Varotto, L., Conanno, C., et al. (2000). Cardiac troponin I as diagnostic and prognostic marker in severe heart failure. The Journal of Heart and Lung Transplantation, 19, 644–652.

    Article  PubMed  Google Scholar 

  57. Dinh, W., et al. (2011). High sensitive troponin T and heart fatty acid binding protein: Novel biomarker in heart failure with normal ejection fraction? A cross-sectional study. BMC Cardiovascular Disorders, 11, 41.

    Article  PubMed  CAS  Google Scholar 

  58. Reichlin, T., et al. (2009). Early diagnosis of myocardial infarction with sensitive troponin assays. The New England Journal of Medicine, 361, 858–867.

    Article  PubMed  CAS  Google Scholar 

  59. Stanton, E. B., Hansen, M. S., Sole, M. J., Gawad, Y., Packer, M., Pitt, B., et al. (2005). Cardiac troponin I, a possible predictor of survival in patients with stable congestive heart failure. Canadian Journal of Cardiology, 21, 39–43.

    PubMed  CAS  Google Scholar 

  60. Peacock, W. F., De Marco, T., Fonarow, G. C., Diercks, D., Wynne, J., Apple, F. S., et al. (2008). Cardiac troponin and outcome in acute heart failure. The New England Journal of Medicine, 358, 2117–2126.

    Article  PubMed  CAS  Google Scholar 

  61. Xue, Y., Clopton, P., Peacock, W. F., & Maisel, A. S. (2011). Serial changes in high-sensitive troponin I predict outcome in patients with decompensated heart failure. European Journal of Heart Failure, 13(1), 37–42.

    Article  PubMed  CAS  Google Scholar 

  62. Felker, G. M., Hasselblad, V., Wilson Tang, W. H., Hernandez, A. F., Armstrong, P. W., Fonarow, G. C., et al. (2012). Troponin I in acute decompensated heart failure: Insights from the ASCEND-HF study. European Journal of Heart Failure, 14(11), 1257–1264.

    Article  PubMed  CAS  Google Scholar 

  63. Bootcov, M. R., Bauskin, A. R., Valenzuela, S. M., Moore, A. G., Bansal, M., He, X. Y., et al. (1997). MIC-1, a novel macrophage inhibitory cytokine, is a divergent member of the TGF-beta superfamily. Proceedings of the National Academy of Sciences of the United States of America, 94, 11514–11519.

    Article  PubMed  CAS  Google Scholar 

  64. Fairlie, W. D., Moor, A. G., Bauskin, A. R., Russel, P. K., Zhang, H. P., & Breit, S. N. (1999). MIC-1 is a novel TGF-beta superfamily cytokine associated with macrophage activation. Journal of Leukocyte Biology, 65, 2–5.

    PubMed  CAS  Google Scholar 

  65. Xu, J., Kimball, T. R., Lorenz, J. N., Brown, D. A., Bauskin, A. R., Klevitsky, R., et al. (2006). GDF15/MIC-1 functions as a protective and antihypertrophic factor released from the myocardium in association with SMAD protein activation. Circulation Research, 98, 342–350.

    Article  PubMed  CAS  Google Scholar 

  66. Kempf, T., Eden, M., Strelau, J., Naguib, M., Willenbockel, C., Tongers, J., et al. (2006). The transforming growth factor-beta superfamily member growth-differentiation factor-15 protects the heart from ischemia/reperfusion injury. Circulation Research, 98, 351–360.

    Article  PubMed  CAS  Google Scholar 

  67. Lind, L., Wallentin, L., Kempf, T., Tapken, H., Quint, A., Lindahl, B., et al. (2009). Growth-differentiation factor-15 is an independent marker of cardiovascular dysfunction and disease in the elderly: Results from the Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS) Study. European Heart Journal, 30, 2346–2353.

    Article  PubMed  CAS  Google Scholar 

  68. Daniels, L. B., Clopton, P., Laughlin, G. A., Maisel, A. S., & Barrett-Connor, E. (2011). Growth-differentiation factor-15 is a robust, independent predictor of 11-year mortality risk in community-dwelling older adults: The Rancho Bernardo Study. Circulation, 123, 2101–2110.

    Article  PubMed  Google Scholar 

  69. Kempf, T., von Haeling, S., Peter, T., Allhoff, T., Cicoira, M., Doehner, W., et al. (2007). Prognostic utility of growth differentiation factor-15 in patients with chronic heart failure. Journal of the American College of Cardiology, 50(11), 1054–1060.

    Article  PubMed  CAS  Google Scholar 

  70. Devarajan, P., & Neutrophil gelatinase-associated lipocalin (NGAL). (2008). A new marker of kidney disease. Scandinavian Journal of Clinical and Laboratory Investigation Supplementum, 241, 89–94.

    Article  PubMed  CAS  Google Scholar 

  71. Goetz, D. H., Willie, S. T., Armen, R. S., et al. (2000). Ligand preference inferred from the structure of neutrophil gelatinase associated lipocalin. Biochemistry, 39, 1935–1941.

    Article  PubMed  CAS  Google Scholar 

  72. Bolignano, D., Donato, V., Coppolino, G., et al. (2008). Neutrophil gelatinase-associated lipocalin (NGAL) as a marker of kidney damage. American Journal of Kidney Diseases, 52, 595–605.

    Article  PubMed  CAS  Google Scholar 

  73. Bellomo, R., Ronco, C., Kellum, J., et al. (2004). Acute renal failure—Definition, outcome measures, animal models, fluid therapy and information technology needs: The second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Critical Care, 8, R204–R212.

    Article  PubMed  Google Scholar 

  74. Mishra, J., Dent, C., Tarabishi, R., et al. (2005). Neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute renal injury after cardiac surgery. The Lancet, 365, 1231–1238.

    Article  CAS  Google Scholar 

  75. Maisel, A. S., Mueller, C., Fitzgerald, R. L., et al. (2011). Prognostic utility of plasma neutrophil gelatinase-associated lipocalin in patients with acute heart failure: The NGAL EvaLuation Along with B-type NaTriuretic Peptide in acutely decompensated heart failure (GALLANT) trial. European Journal of Heart Failure, 13, 846–851.

    Article  PubMed  CAS  Google Scholar 

  76. Torregrosa, I., Montoliu, C., Urios, A., et al. (2012). Early biomarkers of acute kidney failure after heart angiography or heart surgery in patients with acute coronary syndrome or acute heart failure. Nefrología, 32(1), 44–52.

    PubMed  Google Scholar 

  77. Haase, M., Devarajan, P., Haase-Fielitz, A., et al. (2011). The outcome of neutrophil gelatinase-associated lipocalin-positive subclinical acute kidney injury: A multicenter pooled analysis of prospective studies. Journal of the American College of Cardiology, 57, 1752–1761.

    Article  PubMed  CAS  Google Scholar 

  78. Nickolas, T. L., Schmidt-Ott, K. M., Canetta, P., Forster, C., Singer, E., Sise, M., et al. (2012). Diagnostic and prognostic stratification in the emergency department using urinary biomarkers of nephron damage: A multicenter prospective cohort study. Journal of the American College of Cardiology, 59(3), 246–255.

    Article  PubMed  CAS  Google Scholar 

  79. Aghel, A., Shreshta, K., Mullens, W., Borowski, A., & Tang, W. H. (2010). Serum neutrophil gelatinase-associated lipocalin (NGAL) in predicting worsening renal function in acute decompensated heart failure. Journal of Cardiac Failure, 16, 49–54.

    Article  PubMed  CAS  Google Scholar 

  80. Thomsen, R. W., Kasatpibal, N., Riis, A., et al. (2008). The impact of pre-existing heart failure on pneumonia prognosis: Population-based cohort study. Journal of General Internal Medicine, 23(9), 1407–1413.

    Article  PubMed  Google Scholar 

  81. Corrales-Medina, V. F., Musher, D. M., Wells, G. A., et al. (2012). Cardiac complications in patients with community-acquired pneumonia—Incidence, timing, risk-factors, and association with short-term mortality. Circulation, 125, 773–781.

    Article  PubMed  Google Scholar 

  82. Musher, D. M., Rueda, A. M., Kaka, A. S., & Mapara, S. M. (2007). The association between pneumococcal pneumonia and acute cardiac events. Clinical Infectious Diseases, 45, 158–165.

    Article  PubMed  Google Scholar 

  83. Assicot, M., Gendrel, D., Carsin, H., et al. (1993). High serum procalcitonin concentrations in patients with sepsis and infection. The Lancet, 341, 515–518.

    Article  CAS  Google Scholar 

  84. Christ-Crain, M., Stolz, D., Bingisser, R., et al. (2006). Procalcitonin guidance of antibiotic therapy in community-acquired pneumonia: A randomized trial. American Journal of Respiratory and Critical Care Medicine, 174, 84–93.

    Article  PubMed  CAS  Google Scholar 

  85. Nijsten, M., Olinga, P., Hauw, T. T., et al. (2000). Procalcitonin behaves as a fast responding acute phase protein in vivo and in vitro. Critical Care Medicine, 28, 458–461.

    Article  PubMed  CAS  Google Scholar 

  86. Maisel, A. S., Neath, S. X., Landsberg, J., Mueller, C., et al. (2012). Use of procalcitonin for the diagnosis of pneumonia in patients presenting with a chief complaint of dyspnoea: Results from the BACH (Biomarkers in Acute Heart Failure) trial. European Journal of Heart Failure, 14, 278–286.

    Article  PubMed  CAS  Google Scholar 

  87. Dabla, P. K., Dabla, V., & Arora, S. (2011). Co-peptin: Role as a novel biomarker in clinical practice. Clinica Chimica Acta, 412, 22–28.

    Article  CAS  Google Scholar 

  88. Szinnai, G., Morgenthaler, N. G., Berneis, K., et al. (2007). Changes in plasma copeptin, the c-terminal portion of arginine vasopressin during water deprivation and excess in healthy subjects. Journal of Clinical Endocrinology and Metabolism, 92, 3973–3978.

    Article  PubMed  CAS  Google Scholar 

  89. Morgenthaler, N. G., Struck, J., Alonso, C., & Bergman, A. (2006). Assay for the measurement of copeptin, a stable peptide derived from the precursor of vasopressin. Clinical Chemistry, 52, 112–119.

    Article  PubMed  CAS  Google Scholar 

  90. Stoiser, B., et al. (2006). Copeptin, a fragment of the vasopressin precursor, as a novel predictor of outcome in heart failure. European Journal of Clinical Investigation, 36, 771–778.

    Article  PubMed  CAS  Google Scholar 

  91. Voors, A. A., et al. (2009). C-terminal provasopressin (copeptin) is a strong prognostic marker in patients with heart failure after an acute myocardial infarction: Results from OPTIMAAL study. European Heart Journal, 30, 1187–1194.

    Article  PubMed  CAS  Google Scholar 

  92. Peacock, W. F., et al. (2011). Short-term mortality risk in emergency department acute heart failure. Academic Emergency Medicine, 18, 947–958.

    Article  PubMed  Google Scholar 

  93. Iwahana, H., Yanagisawa, K., Ito-Kosaka, A., Kuroiwa, K., Tago, K., Komatsu, N., et al. (1999). Different promoter usage and multiple transcription initiation sites of the interleukin-1 receptor-related human ST2 gene in UT-7 and TM12 cells. European Journal of Biochemistry, 264, 397–406. doi:10.1046/j.1432-1327.1999.00615.

    Article  PubMed  CAS  Google Scholar 

  94. Weinberg, E. O., Shimpo, M., De Keulenaer, G. W., MacGillivray, C., Tominaga, S., Solomon, S. D., et al. (2002). Expression and regulation of ST2, an interleukin-1 receptor family member, in cardiomyocytes and myocardial infarction. Circulation, 106, 2961–2966.

    Article  PubMed  CAS  Google Scholar 

  95. Januzzi, J. L., Jr., Peacock, W. F., Maisel, A. S., et al. (2007). Measurement of the interleukin family member ST2 in patients with acute dyspnea: Results from the PRIDE study. Journal of the American College of Cardiology, 50, 607–613.

    Article  PubMed  CAS  Google Scholar 

  96. Ky, B., French, B., McCloskey, K., Rame, J. E., McIntosh, E., Shahi, P., et al. (2011). High-sensitivity ST2 for prediction of adverse outcomes in chronic heart failure. Circulation Heart Failure, 4, 180–187.

    Article  PubMed  Google Scholar 

  97. Rehman, S. U., Mueller, T., & Januzzi, J. L., Jr. (2008). Characteristics of the novel interleukin family biomarker ST2 in patients with acute heart failure. Journal of the American College of Cardiology, 52, 1458–1465.

    Article  PubMed  CAS  Google Scholar 

  98. Boisot, S., Beede, J., Isakson, S., Chiu, A., Clopton, P., Januzzi, J. L., et al. (2008). Serial sampling of ST2 predicts 90-day mortality following destabilized heart failure. Journal of Cardiac Failure, 14, 732–738.

    Article  PubMed  Google Scholar 

  99. Sharma, U. C., et al. (2004). Galectin-3 marks activated macrophages in failure-prone hypertrophied hearts and contributes to cardiac dysfunction. Circulation, 110, 3121–3128.

    Article  PubMed  CAS  Google Scholar 

  100. De Boer, R. A., Voors, A. A., Mutendam, P., van Gilst, W. H., & van Veldhuisen, D. J. (2009). Galectin-3: A novel mediator of heart failure development and progression. European Journal of Heart Failure, 11, 811–817.

    Article  PubMed  CAS  Google Scholar 

  101. van Kimmenade, R. R., Januzzi, J. L., Jr., Ellinor, P. T., Sharma, U. C., Bakker, J. A., Low, A. F., et al. (2006). Utility of amino-terminal pro-brain natriuretic peptide, galectin-3, and apelin for the evaluation of patients with acute heart failure. Journal of the American College of Cardiology, 48, 1217–1224.

    Article  PubMed  CAS  Google Scholar 

  102. Lok, D. J., Lok, S. I., Bruggink-Andre de la Porte, P. W., Badings, E., Lipsic, E., Wijngaarden, J. V., et al. (2013). Galectin-3 is an independent marker for ventricular remodeling and mortality in patients with chronic heart failure. Clinical Research in Cardiology, 102(2), 103–110.

    Article  PubMed  CAS  Google Scholar 

  103. van der Velde, A. R., Gullestad, L., Ueland, T., Aukrust, P., Guo, Y., Adourian, A. S., Muntendam, P., et al. (2013). Prognostic value of changes in galectin-3 levels over time in patients with heart failure: Data from CORONA and COACH. Circulation: Heart Failure, 6, 219–226.

  104. Gopalm, D. M., Kommineni, M., Ayalon, N., et al. (2012). Relationship of plasma galectin-3 to renal function in patients with heart failure: Effects of clinical status, pathophysiology of heart failure, and presence or absence of heart failure. Journal of American Heart Association, e00760. doi:10.1161/JAHA.112.000760.

  105. Felker, G. M., Fiuzat, M., Shaw, L. K., et al. (2012). Galectin-3 in ambulatory patients with heart failure: Results from the HF-ACTION study. Circulation Heart Failure, 5, 72–78.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

All authors have read the journal’s policy on disclosure of potential conflicts of interest. Alan S. Maisel is a consultant for Alere and serves on the advisory board for Critical Diagnostics. He receives research support from Critical Diagnostics, Alere, Abbott, Nanosphere, and Brahms-Thermo Fisher Scientific. The remaining authors have no conflicts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajiv Choudhary.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choudhary, R., Iqbal, N., Khusro, F. et al. Heart Failure Biomarkers. J. of Cardiovasc. Trans. Res. 6, 471–484 (2013). https://doi.org/10.1007/s12265-013-9465-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-013-9465-0

Keywords

Navigation