Skip to main content

Advertisement

Log in

MCARD-Mediated Gene Transfer of GRK2 Inhibitor in Ovine Model of Acute Myocardial Infarction

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

β-Adrenergic receptor (βAR) dysfunction in acute myocardial infarction (MI) is associated with elevated levels of the G-protein-coupled receptor kinase-2 (GRK2), which plays a key role in heart failure progression. Inhibition of GRK2 via expression of a peptide βARKct transferred by molecular cardiac surgery with recirculating delivery (MCARD) may be a promising intervention. Five sheep underwent scAAV6-mediated MCARD delivery of βARKct, and five received no treatment (control). After a 3-week period, the branch of the circumflex artery (OM1) was ligated. Quantitative PCR data showed intense βARKct expression in the left ventricle (LV). Circumferential fractional shortening was 23.4 ± 7.1 % (baseline) vs. −2.9 ± 5.2 % (p < 0.05) in the control at 10 weeks. In the MCARD-βARKct group, this parameter was close to baseline. The same trend was observed with LV wall thickening. Cardiac index fully recovered in the MCARD-βARKct group. LV end-diastolic volume and LV end-diastolic pressure did not differ in both groups. MCARD-mediated βARKct gene expression results in preservation of regional and global systolic function after acute MI without arresting progressive ventricular remodeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

βAR:

β-Adrenergic receptor

MI:

Myocardial infarction

GRK2:

G-protein-coupled receptor kinase-2

βARKct:

Carboxyl-terminal portion of GRK2

MCARD:

Molecular cardiac surgery with recirculating delivery

MRI:

Magnetic resonance imaging

RTqPCR:

Reverse Transcriptase real-time quantitative polymerase chain reaction

References

  1. Nayak, L., & Rosengart, T. K. (2005). Gene therapy for heart failure. Seminars in Thoracic and Cardiovascular Surgery, 17, 343–347.

    Article  PubMed  Google Scholar 

  2. Emani, S., Ramlawi, B., Sodha, N. R., Li, J., Bianchi, C., & Sellke, F. W. (2009). Increased vascular permeability after cardiopulmonary bypass in patients with diabetes is associated with increased expression of vascular endothelial growth factor and hepatocyte growth factor. The Journal of Thoracic and Cardiovascular Surgery, 138, 185–191.

    Article  PubMed  Google Scholar 

  3. Bulcao, C. F., Pandalai, P. K., D’Souza, K. M., Merrill, W. H., & Akhter, S. A. (2008). Uncoupling of myocardial beta-adrenergic receptor signaling during coronary artery bypass grafting: the role of GRK2. The Annals of Thoracic Surgery, 86, 1189–1194.

    Article  PubMed  Google Scholar 

  4. Kido, M., Sullivan, C. C., Deutsch, R., Jamieson, S. W., & Thistlethwaite, P. A. (2005). Gene transfer of a TIE2 receptor antagonist prevents pulmonary hypertension in rodents. The Journal of Thoracic and Cardiovascular Surgery, 129, 268–276.

    Article  PubMed  CAS  Google Scholar 

  5. Koch, W. J., Lefkowitz, R. J., & Rockman, H. A. (2000). Functional consequences of altering myocardial adrenergic receptor signaling. Annual Review of Physiology, 62, 237–260.

    Article  PubMed  CAS  Google Scholar 

  6. Kudei, R. K., Iwase, M., Uechi, M., Vatner, D. E., Oka, N., Ishikawa, Y., et al. (1997). Effects of chronic beta-adrenergic receptor stimulation in mice. Journal of Molecular and Cellular Cardiology, 29, 2735–2746.

    Article  Google Scholar 

  7. Engelhardt, S., Hein, L., Wiesmann, F., & Lohse, M. J. (1999). Progressive hypertrophy and heart failure in beta 1-adrenergic receptor transgenic mice. Proceedings of the National Academy of Sciences of the United States of America, 96, 7059–7064.

    Article  PubMed  CAS  Google Scholar 

  8. Liggett, S. B., Tepe, N. M., Lorenz, J. N., Canning, A. M., Jantz, T. D., Mitarai, S., et al. (2000). Early and delayed consequences of beta (2)-adrenergic receptor overexpression in mouse hearts: critical role for expression level. Circulation, 101, 1707–1714.

    Article  PubMed  CAS  Google Scholar 

  9. Rengo, G., Lymperopoulos, A., Zincarelli, C., Donniacuo, M., Soltys, S., Rabinowitz, J. E., et al. (2009). Myocardial adeno-associated virus serotype 6-BARKct gene therapy improves cardiac function and normalizes the neurohormonal axis in chronic heart failure. Circulation, 119, 89–98.

    Article  PubMed  CAS  Google Scholar 

  10. Tevaearai, H. T., Walton, G. B., Keys, J. R., Koch, W. J., & Eckhart, A. D. (2005). Acute ischemic cardiac dysfunction is attenuated via gene transfer of a peptide inhibitor of the β-adrenergic receptor kinase (βARK1). The Journal of Gene Medicine, 7, 1172–1177.

    Article  PubMed  CAS  Google Scholar 

  11. White, J. D., Thesier, D. M., Swain, J. D., Katz, M. G., Tomasulo, K. E., Henderson, A., et al. (2011). Myocardial gene delivery using molecular cardiac surgery with recombinant adeno-associated virus vectors in vivo. Gene Therapy, 18, 546–552.

    Article  PubMed  CAS  Google Scholar 

  12. Kuehne, T., Yilmaz, S., Steendijk, P., Moore, P., Groenink, M., Saaed, M., et al. (2004). Magnetic resonance imaging analysis of right ventricular pressure–volume loops. Circulation, 110, 2010–2016.

    Article  PubMed  Google Scholar 

  13. Katz, M. G., Fargnoli, A. S., Tomasulo, C. E., Pritchette, L. A., & Bridges, C. R. (2011). Model-specific selection of molecular targets for heart failure gene therapy. The Journal of Gene Medicine, 13, 573–586.

    Article  PubMed  CAS  Google Scholar 

  14. Krum, H., & Abraham, W. T. (2009). Heart failure. Lancet, 373, 941–955.

    Article  PubMed  Google Scholar 

  15. Vanhecke, T. E., Kim, R., Raheem, S. Z., & McCullough, P. A. (2010). Myocardial ischemia in patients with diastolic dysfunction and heart failure. Current Cardiology Reports, 12, 216–222.

    Article  PubMed  Google Scholar 

  16. Gomez, A. M., Guatimosim, S., Dilly, K. W., Vassort, G., & Lederer, W. J. (2001). Heart failure after myocardial infarction: altered excitation-contraction coupling. Circulation, 104, 688–693.

    Article  PubMed  CAS  Google Scholar 

  17. Sjaastad, I., Wasserstrom, A., & Sejersted, O. M. (2003). Heart failure—a challenge to our current concepts of excitation-contraction coupling. Journal de Physiologie, 546, 33–47.

    Article  CAS  Google Scholar 

  18. Katz, M. G., Fargnoli, A. S., Swain, J. D., Tomasulo, C. E., Ciccarelli, M., Huang, Z. M., et al. (2012). AAV6-βARKct gene delivery mediated by molecular cardiac surgery with recirculating delivery (MCARD) in sheep results in robust gene expression and increased adrenergic reserve. The Journal of Thoracic and Cardiovascular Surgery, 143, 720–726.

    Article  PubMed  CAS  Google Scholar 

  19. Lavu, M., Gundewar, S., & Lefer, D. J. (2010). Gene therapy for ischemic heart disease. Journal of Molecular and Cellular Cardiology, 50, 742–750.

    Article  PubMed  Google Scholar 

  20. Wang, X., & Dhalla, N. S. (2000). Modification of β-adrenoceptor signal transduction pathway by genetic manipulation and heart failure. Molecular and Cellular Biochemistry, 214, 131–155.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was sponsored in part by the National Heart, Lung, and Blood Institute (1-R01-HL083078-01A2) and the Gene Therapy Resource Program (GTRP) of the National Heart, Lung, and Blood Institute NIH P30-DKO47757. We would like to extend acknowledgments to Charles Yarnall, Alice Isidro, and Michael Petrov for their excellent technical assistance. We also thank Ted Plappert for completing echocardiography studies and James Pilla for MRI studies as well as Natalia Zinchenko and Jane Ingram for performing histological staining. Anthony Carty, JanLee Jensen, James Marx, Jennifer Kirsch, and Allison Czarnecki deserve thanks as well for excellent care and handling of the animals in the Biomedical Research Building and Glenolden Vivarium-University of Pennsylvania.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles R. Bridges.

Additional information

J. D. Swain, A. S. Fargnoli and M. G. Katz contributed equally to this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Swain, J.D., Fargnoli, A.S., Katz, M.G. et al. MCARD-Mediated Gene Transfer of GRK2 Inhibitor in Ovine Model of Acute Myocardial Infarction. J. of Cardiovasc. Trans. Res. 6, 253–262 (2013). https://doi.org/10.1007/s12265-012-9418-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-012-9418-z

Keywords

Navigation