Skip to main content

Advertisement

Log in

Mirabegron, a Clinically Approved β3 Adrenergic Receptor Agonist, Does Not Reduce Infarct Size in a Swine Model of Reperfused Myocardial Infarction

  • Original Article
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

The administration of the selective β3 adrenergic receptor (β3AR) agonist BRL-37344 protects from myocardial ischemia/reperfusion injury (IRI), although the lack of clinical approval limits its translatability. We tested the cardioprotective effect of mirabegron, the first-in-class β3AR agonist approved for human use. A dose-response study was conducted in 6 pigs to select the highest intravenous dose of mirabegron without significant detrimental hemodynamic effect. Subsequently, closed chest anterior myocardial infarction (45 min ischemia followed by reperfusion) was performed in 26 pigs which randomly received either mirabegron (10 μg/kg) or placebo 5 min before reperfusion. Day-7 cardiac magnetic resonance (CMR) showed no differences in infarct size (35.0 ± 2.0% of left ventricle (LV) vs. 35.9 ± 2.4% in mirabegron and placebo respectively, p = 0.782) or LV ejection fraction (36.3 ± 1.1 vs. 34.6 ± 1.9%, p = 0.430). Consistent results were obtained on day-45 CMR. In conclusion, the intravenous administration of the clinically available selective β3AR agonist mirabegron does not reduce infarct size in a swine model of IRI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AMI:

Acute myocardial infarction

β3AR :

β3 adrenergic receptor

CMR:

Cardiovascular magnetic resonance

IRI:

Ischemia/reperfusion injury

IS:

Infarct size

LV:

Left ventricle

LVEDV:

Left ventricular end-diastolic volume

LVEF:

Left ventricular ejection fraction

LVESV :

Left ventricular end-systolic volume

NOS:

Nitric oxide synthase

References

  1. Rosselló, X., Huo, Y., Pocock, S., Van de Werf, F., Chin, C. T., Danchin, N., … Bueno, H. (2017). Global geographical variations in ST-segment elevation myocardial infarction management and post-discharge mortality. International Journal of Cardiology, 245, 27–34. https://doi.org/10.1016/j.ijcard.2017.07.039.

  2. Townsend, N., Wilson, L., Bhatnagar, P., Wickramasinghe, K., Rayner, M., & Nichols, M. (2016). Cardiovascular disease in Europe: epidemiological update 2016. European Heart Journal, 37(42), 3232–3245. https://doi.org/10.1093/eurheartj/ehw334.

    Article  PubMed  Google Scholar 

  3. Stone, G. W., Selker, H. P., Thiele, H., Patel, M. R., Udelson, J. E., Ohman, E. M., … Ben-Yehuda, O. (2016). Relationship between infarct size and outcomes following primary PCI: patient-level analysis from 10 randomized trials. Journal of the American College of Cardiology, 67(14), 1674–83. https://doi.org/10.1016/j.jacc.2016.01.069.

  4. Ibáñez, B., Heusch, G., Ovize, M., & Van de Werf, F. (2015). Evolving therapies for myocardial ischemia/reperfusion injury. Journal of the American College of Cardiology, 65(14), 1454–1471. https://doi.org/10.1016/j.jacc.2015.02.032.

    Article  PubMed  Google Scholar 

  5. Fuster, V. (2014). Top 10 cardiovascular therapies and interventions for the next decade. Nature Reviews. Cardiology, 11(11), 671–683. https://doi.org/10.1038/nrcardio.2014.137.

    Article  PubMed  Google Scholar 

  6. Gauthier, C., Tavernier, G., Charpentier, F., Langin, D., & Le Marec, H. (1996). Functional beta3-adrenoceptor in the human heart. The Journal of Clinical Investigation, 98(2), 556–562. https://doi.org/10.1172/JCI118823.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Balligand, J.-L. (2016). Cardiac salvage by tweaking with beta-3-adrenergic receptors. Cardiovascular Research, 111(2), 128–133. https://doi.org/10.1093/cvr/cvw056.

    Article  PubMed  CAS  Google Scholar 

  8. Aragón, J. P., Condit, M. E., Bhushan, S., Predmore, B. L., Patel, S. S., Grinsfelder, D. B., … Lefer, D. J. (2011). Beta3-adrenoreceptor stimulation ameliorates myocardial ischemia-reperfusion injury via endothelial nitric oxide synthase and neuronal nitric oxide synthase activation. Journal of the American College of Cardiology, 58(25), 2683–91. https://doi.org/10.1016/j.jacc.2011.09.033.

  9. García-Prieto, J., García-Ruiz, J. M., Sanz-Rosa, D., Pun, A., García-Alvarez, A., Davidson, S. M., et al. (2014). β3 adrenergic receptor selective stimulation during ischemia/reperfusion improves cardiac function in translational models through inhibition of mPTP opening in cardiomyocytes. Basic Research in Cardiology, 109(4), 422. https://doi.org/10.1007/s00395-014-0422-0.

    Article  PubMed  CAS  Google Scholar 

  10. Niu, X., Zhao, L., Li, X., Xue, Y., Wang, B., Lv, Z., … Zheng, Q. (2014). β3-Adrenoreceptor stimulation protects against myocardial infarction injury via eNOS and nNOS activation. PLoS One, 9(6), e98713. https://doi.org/10.1371/journal.pone.0098713.

  11. Niu, X., Watts, V. L., Cingolani, O. H., Sivakumaran, V., Leyton-Mange, J. S., Ellis, C. L., … Barouch, L. A. (2012). Cardioprotective effect of beta-3 adrenergic receptor agonism: role of neuronal nitric oxide synthase. Journal of the American College of Cardiology, 59(22), 1979–87. https://doi.org/10.1016/j.jacc.2011.12.046.

  12. García-Álvarez, A., Pereda, D., García-Lunar, I., Sanz-Rosa, D., Fernández-Jiménez, R., García-Prieto, J., … Ibañez, B. (2016). Beta-3 adrenergic agonists reduce pulmonary vascular resistance and improve right ventricular performance in a porcine model of chronic pulmonary hypertension. Basic Research in Cardiology, 111(4), 49. https://doi.org/10.1007/s00395-016-0567-0.

  13. Belge, C., Hammond, J., Dubois-Deruy, E., Manoury, B., Hamelet, J., Beauloye, C., … Balligand, J.-L. (2014). Enhanced expression of β3-adrenoceptors in cardiac myocytes attenuates neurohormone-induced hypertrophic remodeling through nitric oxide synthase. Circulation, 129(4), 451–62. https://doi.org/10.1161/CIRCULATIONAHA.113.004940.

  14. Vij, M., & Drake, M. J. (2015). Clinical use of the β3 adrenoceptor agonist mirabegron in patients with overactive bladder syndrome. Therapeutic Advances in Urology, 7(5), 241–248. https://doi.org/10.1177/1756287215591763.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Rossello, X., & Yellon, D. M. (2016). Cardioprotection: the disconnect between bench and bedside. Circulation, 134(8), 574–575. https://doi.org/10.1161/CIRCULATIONAHA.116.022829.

    Article  PubMed  Google Scholar 

  16. Eltink, C., Lee, J., Schaddelee, M., Zhang, W., Kerbusch, V., Meijer, J., … Sawamoto, T. (2012). Single dose pharmacokinetics and absolute bioavailability of mirabegron, a β3-adrenoceptor agonist for treatment of overactive bladder. International Journal of Clinical Pharmacology and Therapeutics, 50(11), 838–50. https://doi.org/10.5414/CP201782.

  17. Korstanje, C., Suzuki, M., Yuno, K., Sato, S., Ukai, M., Schneidkraut, M. J., & Yan, G. X. (2017). Translational science approach for assessment of cardiovascular effects and proarrhythmogenic potential of the beta-3 adrenergic agonist mirabegron. Journal of Pharmacological and Toxicological Methods, 87, 74–81. https://doi.org/10.1016/j.vascn.2017.04.008.

    Article  PubMed  CAS  Google Scholar 

  18. Fernández-Jiménez, R., Sánchez-González, J., Agüero, J., García-Prieto, J., López-Martín, G. J., García-Ruiz, J. M., … Ibáñez, B. (2015). Myocardial edema after ischemia/reperfusion is not stable and follows a bimodal pattern. Journal of the American College of Cardiology, 65(4), 315–323. https://doi.org/10.1016/j.jacc.2014.11.004.

  19. Kelley, K. W., Curtis, S. E., Marzan, G. T., Karara, H. M., & Anderson, C. R. (1973). Body surface area of female swine. Journal of Animal Science, 36(5), 927–930.

    Article  PubMed  CAS  Google Scholar 

  20. Bundgaard, H., Axelsson, A., Hartvig Thomsen, J., Sørgaard, M., Kofoed, K. F., Hasselbalch, R., … Rasmussen, H. H. (2017). The first-in-man randomized trial of a beta3 adrenoceptor agonist in chronic heart failure: the BEAT-HF trial. European Journal of Heart Failure, 19(4), 566–575. https://doi.org/10.1002/ejhf.714.

  21. Gauthier, C., Rozec, B., Manoury, B., & Balligand, J.-L. (2011). Beta-3 adrenoceptors as new therapeutic targets for cardiovascular pathologies. Current Heart Failure Reports, 8(3), 184–192. https://doi.org/10.1007/s11897-011-0064-6.

    Article  PubMed  CAS  Google Scholar 

  22. Takasu, T., Ukai, M., Sato, S., Matsui, T., Nagase, I., Maruyama, T., … Yamaguchi, O. (2007). Effect of (R)-2-(2-aminothiazol-4-yl)-4′-{2-[(2-hydroxy-2-phenylethyl)amino]ethyl} acetanilide (YM178), a novel selective beta3-adrenoceptor agonist, on bladder function. The Journal of Pharmacology and Experimental Therapeutics, 321(2), 642–7. https://doi.org/10.1124/jpet.106.115840

  23. Aizawa, N., Homma, Y., & Igawa, Y. (2012). Effects of mirabegron, a novel β3-adrenoceptor agonist, on primary bladder afferent activity and bladder microcontractions in rats compared with the effects of oxybutynin. European Urology, 62(6), 1165–1173. https://doi.org/10.1016/j.eururo.2012.08.056.

    Article  PubMed  CAS  Google Scholar 

  24. Gillespie, J. I., Palea, S., Guilloteau, V., Guerard, M., Lluel, P., & Korstanje, C. (2012). Modulation of non-voiding activity by the muscarinergic antagonist tolterodine and the β3-adrenoceptor agonist mirabegron in conscious rats with partial outflow obstruction. BJU International, 110(2b), E132–E142. https://doi.org/10.1111/j.1464-410X.2012.11240.x.

    Article  PubMed  CAS  Google Scholar 

  25. Gauthier, C., Tavernier, G., Trochu, J. N., Leblais, V., Laurent, K., Langin, D., … Le Marec, H. (1999). Interspecies differences in the cardiac negative inotropic effects of beta(3)-adrenoceptor agonists. The Journal of Pharmacology and Experimental Therapeutics, 290(2), 687–93.

  26. Rossello, X., Hall, A. R., Bell, R. M., & Yellon, D. M. (2015). Characterization of the Langendorff perfused isolated mouse heart model of global ischemia-reperfusion injury: impact of ischemia and reperfusion length on infarct size and LDH release. Journal of Cardiovascular Pharmacology and Therapeutics, 21(3), 286–295. https://doi.org/10.1177/1074248415604462.

    Article  PubMed  CAS  Google Scholar 

  27. Kleinbongard, P., Amanakis, G., Skyschally, A., & Heusch, G. (2018). Reflection of cardioprotection by remote ischemic perconditioning in attenuated ST-segment elevation during ongoing coronary occlusion in pigs: evidence for cardioprotection from ischemic injury. Circulation Research, 122(8), 1102–1108. https://doi.org/10.1161/CIRCRESAHA.118.312784.

    Article  PubMed  CAS  Google Scholar 

  28. Rossello, X., & Ibanez, B. (2018). Infarct size reduction by targeting ischemic injury. Circulation Research, 122(8), 1041–1043.

    Article  PubMed  CAS  Google Scholar 

  29. García-Ruiz, J. M., Fernández-Jiménez, R., García-Alvarez, A., Pizarro, G., Galán-Arriola, C., Fernández-Friera, L., … Ibáñez, B. (2016). Impact of the timing of metoprolol administration during STEMI on infarct size and ventricular function. Journal of the American College of Cardiology, 67(18), 2093–2104. https://doi.org/10.1016/j.jacc.2016.02.050.

  30. Pryds, K., Terkelsen, C. J., Sloth, A. D., Munk, K., Nielsen, S. S., Schmidt, M. R., & Bøtker, H. E. (2016). Remote ischaemic conditioning and healthcare system delay in patients with ST-segment elevation myocardial infarction. Heart, 102(13), 1023–1028. https://doi.org/10.1136/heartjnl-2015-308980.

    Article  PubMed  Google Scholar 

  31. Dall’Armellina, E., Karia, N., Lindsay, A. C., Karamitsos, T. D., Ferreira, V., Robson, M. D., … Choudhury, R. P. (2011). Dynamic changes of edema and late gadolinium enhancement after acute myocardial infarction and their relationship to functional recovery and salvage index. Circulation. Cardiovascular Imaging, 4(3), 228–36. https://doi.org/10.1161/CIRCIMAGING.111.963421.

  32. Fernández-Jiménez, R., Galán-Arriola, C., Sánchez-González, J., Agüero, J., López-Martín, G. J., Gomez-Talavera, S., … Ibanez, B. (2017). Effect of ischemia duration and protective interventions on the temporal dynamics of tissue composition after myocardial infarction. Circulation Research, 121(4), 439–450. https://doi.org/10.1161/CIRCRESAHA.117.310901.

  33. Jablonowski, R., Engblom, H., Kanski, M., Nordlund, D., Koul, S., van der Pals, J., … Arheden, H. (2015). Contrast-enhanced CMR overestimates early myocardial infarct size: mechanistic insights using ECV measurements on day 1 and day 7. JACC Cardiovascular Imaging, 8(12), 1379–1389. https://doi.org/10.1016/j.jcmg.2015.08.015.

  34. Fernández-Jiménez, R., García-Prieto, J., Sánchez-González, J., Agüero, J., López-Martín, G. J., Galán-Arriola, C., … Ibáñez, B. (2015). Pathophysiology underlying the bimodal edema phenomenon after myocardial ischemia/reperfusion. Journal of the American College of Cardiology, 66(7), 816–28. https://doi.org/10.1016/j.jacc.2015.06.023.

  35. Fernández-Jiménez, R., Barreiro-Pérez, M., Martin-García, A., Sánchez-González, J., Agüero, J., Galán-Arriola, C., … Ibanez, B. (2017). Dynamic edematous response of the human heart to myocardial infarction: implications for assessing myocardial area at risk and salvage. Circulation, 136(14), 1288–1300. https://doi.org/10.1161/CIRCULATIONAHA.116.025582.

Download references

Acknowledgments

The authors are greatly indebted to Gonzalo J Lopez-Martin and Angel Macias for image acquisition. The authors thank Tamara Cordoba, Oscar Sanz, Ruben Mota, Santiago Rodriguez, Eugenio Fernández, and the rest of the team at the CNIC Animal Facility and farm for providing outstanding animal care and support. The authors also thank Juan Pellico for the mirabegron purity check out with NMR.

Sources of Funding

Dr. Rossello has received support from SEC-CNIC CARDIOJOVEN Program. R. F-J is a recipient of funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No MSCA-IF-GF-707642. This study was partially supported by grants from the Spanish Ministry of Economy and Competitiveness (MINECO) through the Carlos III Institute of Health-Fondo de Investigación Sanitaria (PI10/02268, PI13/01979, and PI16/02110), and the Fondo Europeo de Desarrollo Regional (FEDER, RD: SAF2013-49663-EXP). This study forms part of a Master Research Agreement between the CNIC and Philips Healthcare. The CNIC is supported by the Ministerio de Ciencia, Innovación y Universidades and the Pro CNIC Foundation, and is a Severo Ochoa Center of Excellence (MEIC award SEV-2015-0505).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Borja Ibanez.

Ethics declarations

Disclosures

Dr. Ibanez and Dr. García-Álvarez are inventors of the patent entitled “Use of selective beta-3 adrenergic agonists for the treatment of pulmonary hypertension” (PCT/ES2013/070611). Javier Sánchez-González is Philips employee.

Human Subjects

No human studies were carried out by the authors for this article.

Animal Studies

All institutional and national guidelines for the care and use of laboratory animals were followed and approved by the appropriate institutional committees.

Additional information

Associate Editor Enrique Lara-Pezzi oversaw the review of this article

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rossello, X., Piñero, A., Fernández-Jiménez, R. et al. Mirabegron, a Clinically Approved β3 Adrenergic Receptor Agonist, Does Not Reduce Infarct Size in a Swine Model of Reperfused Myocardial Infarction. J. of Cardiovasc. Trans. Res. 11, 310–318 (2018). https://doi.org/10.1007/s12265-018-9819-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-018-9819-8

Keywords

Navigation