Skip to main content

Advertisement

Log in

Current and novel cardiac support therapies

  • Published:
Current Heart Failure Reports Aims and scope Submit manuscript

Abstract

Despite optimal medical therapy, many heart failure patients progress to end-stage disease associated with reduced quality of life and poor outcome. However, these patients can benefit from current novel cardiac support strategies, including ventricular assist devices (VADs), cardiac support devices (CSDs), and future cell- and/or matrix-based therapies. The most exciting goal in using VADs and CSDs is to achieve reverse remodeling, suppression of remodeling gene programs, and activation of myocardial recovery programs, which will improve left ventricular shape, size, and function. Long-term left VADs are effective, but recovery upon removal is uncommon. Passive CSDs (eg, Acorn devices) are very promising as long-term devices for therapy of end-stage heart failure and reversal of structural and biochemical remodeling. Expanding CSD use to include preventing progressive adverse left ventricular remodeling after ST-segment elevation myocardial infarction requires further study. The combination of cell- and/or matrix-based therapies with CSDs is under investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Hunt SA: ACC/AHA 2005 guideline update for the diagnosis and management of chronic heart failure in the adult: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Update the 2001 Guidelines for the Evaluation and Management of Heart Failure). J Am Coll Cardiol 2005, 46:e1–e82.

    Article  PubMed  Google Scholar 

  2. Mann DL: Pathophysiology of heart failure. In Braunwald’s Heart Disease: A Textbook of Cardiovascular Medicine, edn 7. Edited by Libby P, Bonow RO, Man DL, Zipes DP. Philadelphia: Saunders Elsevier; 2008:541–560.

    Google Scholar 

  3. Lowes BD, Gilbert EM, Abraham WT, et al.: Myocardial gene expression in dilated cardiomyopathy treated with beta-blocking agents. N Engl J Med 2002, 346:1357–1365.

    Article  PubMed  CAS  Google Scholar 

  4. Jugdutt BI: Ventricular remodeling postinfarction and the extracellular collagen matrix: when is enough enough? Circulation 2003, 108:1395–1403.

    Article  PubMed  Google Scholar 

  5. Jugdutt BI: Remodeling of the myocardium and potential targets in the collagen degradation and synthesis pathways. Curr Drug Targets, Cardiovasc Haematol Disord 2003, 3:1–30.

    Article  CAS  Google Scholar 

  6. McCarthy PM: Surgical management of heart failure. In Braunwald’s Heart Disease: A Textbook of Cardiovascular Medicine. Edited by Libby P, Bonow RO, Man DL, Zipes DP. Philadelphia: Saunders Elsevier; 2008:665–684.

    Google Scholar 

  7. Taylor DO, Edwards LB, Boucek MM, et al.: Registry of the International Society for Heart and Lung Transplantation: twenty-fourth official adult heart transplant report-2007. J Heart Lung Transplant 2007, 26:769–781.

    Article  PubMed  Google Scholar 

  8. Goldstein DJ, Smego D, Michler RE: Surgical aspects of congestive heart failure. Heart Fail Rev 2006, 11:171–92.

    Article  PubMed  Google Scholar 

  9. Wellnhofer E, Olariu A, Klein C: Magnetic resonance lowdose dobutamine test is superior to SCAR quantification for the prediction of functional recovery. Circulation 2004, 109:2172–2174.

    Article  PubMed  Google Scholar 

  10. Aziz T, Burgess M, Rahman AN, et al.: Cardiac transplantation for cardiomyopathy and ischemic heart disease: differences in outcome up to 10 years. J Heart Lung Transplant 2001, 20:525–533.

    Article  PubMed  CAS  Google Scholar 

  11. Copeland JG, Smith RG, Arabia FA, et al.: Cardiac replacement with a total artificial heart as a bridge to transplantation. N Engl J Med 2004, 351:859–867.

    Article  PubMed  CAS  Google Scholar 

  12. Patel SM, Throckmorton AL, Untaroiu A, et al.: The status of failure and reliability testing of artificial blood pumps. ASAIO J 2005, 51:440–451.

    Article  PubMed  Google Scholar 

  13. Abiomed. Available at http://www.abiomed.com/products/heart_replacement.cfm. Accessed October 2008.

  14. Phillips HR, O’Connor CM, Rogers J: Revascularization for heart failure. Am Heart J 2007, 153(4 Suppl):65–73.

    Article  PubMed  Google Scholar 

  15. Carluccio E, Biagioli P, Alunni G, et al.: Patients with hibernating myocardium show altered left ventricular volumes and shape, which revert after revascularization: evidence that dyssynergy might directly induce cardiac remodeling. J Am Coll Cardiol 2006, 47:969–977.

    Article  PubMed  Google Scholar 

  16. Allman KC, Shaw LJ, Hachamovitch R, Udelson JE: Myocardial viability testing and impact of revascularization on prognosis in patients with coronary artery disease and left ventricular dysfunction: a meta-analysis. J Am Coll Cardiol 2002, 39:1151–1158.

    Article  PubMed  Google Scholar 

  17. Tarakji KG, Brunken R, McCarthy PM, et al.: Myocardial viability testing and the effect of early intervention in patients with advanced left ventricular systolic dysfunction. Circulation 2006, 113:230–237.

    Article  PubMed  Google Scholar 

  18. Doenst T, Velazquez EJ, Beyersdorf F, et al.: To STICH or not to STICH: we know the answer, but do we understand the question? J Thorac Cardiovasc Surg 2005, 129:246–249.

    Article  PubMed  Google Scholar 

  19. Di Sciascio G, Patti G, D’Ambrosio, Nusca A: Coronary stenting in patients with depressed left ventricular function: acute and long-term results in a selected population. Catheter Cardiovasc Interv 2003, 59:429–433.

    Article  PubMed  Google Scholar 

  20. Beanlands R, Nichol G, Ruddy TD, et al.: Evaluation of outcome and cost effectiveness using an FDG PET-guided approach to management of patients with coronary disease and severe left ventricular dysfunction (PARR-2): rational, design, and methods. Control Clin Trials 2003, 24:776–794.

    Article  PubMed  Google Scholar 

  21. Patel JB, Borgeson DD, Barnes ME, et al.: Mitral regurgitation in patients with advanced systolic heart failure. J Card Fail 2004, 10:285–291.

    Article  PubMed  Google Scholar 

  22. Badhwar V, Bolling SF: Mitral valve surgery in the patient with left ventricular dysfunction. Semin Thorac Cardiovasc Surg 2002, 14:133–136.

    Article  PubMed  Google Scholar 

  23. Gangemi JJ, Tribble CG, Ross SD, et al.: Does the additive risk of mitral valve repair in patients with ischemic cardiomyopathy prohibit surgical intervention? Ann Surg 2000, 231:710–714.

    Article  PubMed  CAS  Google Scholar 

  24. Di Donato M, Sabatier M, Dor V, et al.: Effects of the Dor procedure on left ventricular dimension and shape and geometric correlates of mitral regurgitation one year after surgery. J Thorac Cardiovasc Surg 2001, 121:91–96.

    Article  PubMed  Google Scholar 

  25. Athanasuleas CL, Buckberg GD, Stanley AW, et al.: Surgical ventricular restoration in the treatment of congestive heart failure due to post-infarction ventricular dilation. J Am Coll Cardiol 2004, 44:1439–1445.

    Article  PubMed  Google Scholar 

  26. Adams JD, Fedoruk LM, Tache-Leon CA, et al.: Does preoperative ejection fraction predict operative mortality with left ventricular restoration? Ann Thorac Surg 2006, 82:1715–1719.

    Article  PubMed  Google Scholar 

  27. Parolari A, Naliato M, Loardi C, et al.: Surgery of left ventricular aneurysm: a meta-analysis of early outcomes following different reconstruction techniques. Ann Thorac Surg 2007, 83:2009–2016.

    Article  PubMed  Google Scholar 

  28. Naka Y, Rose EA: Assisted circulation in the treatment of heart failure. In Braunwald’s Heart Disease: A Textbook of Cardiovascular Medicine. Edited by Libby P, Bonow RO, Man DL, Zipes DP. Philadelphia: Saunders Elsevier; 2008:685–696.

    Google Scholar 

  29. Rose EA, Gelijns AC, Moskowitz AJ, et al.: Long-term mechanical left ventricular assistance for end-stage heart failure. N Engl J Med 2001, 345:1435–1443.

    Article  PubMed  CAS  Google Scholar 

  30. Stevenson LW, Miller LW, Desvigne-Nickens P, et al.: Left ventricular assist device as destination for patients undergoing intravenous inotropic therapy: a subset analysis from REMATCH (randomized evaluation of mechanical assistance in treatment of chronic heart failure). Circulation 2004, 110:975–981.

    Article  PubMed  Google Scholar 

  31. Thoratec. Available at http://www.thoratec.com/vad-trialsoutcomes/index.aspx. Accessed October 2008.

  32. Jarvik Heart: Clinical trials. Available at http://www.jarvikheart.com/basic.asp?id=33. Accessed October 2008.

  33. MedGadget: CentriMag right ventricular assist device gets humanitarian device exemption. Available at http://medgadget.com/archives/2008/10/centrimag_right_ventricular_ assist_device_gets_humanitarian_device_exemption.html Accessed October 2008.

  34. Jugdutt BI, Butler C: Ventricular unloading, tissue angiotensin II, matrix modulation, and function during left ventricular assist device support. J Am Coll Cardiol 2007, 49:1175–1177.

    Article  PubMed  Google Scholar 

  35. Klotz S, Danser AH, Foronjy RF, et al.: The impact of angiotensin-converting enzyme inhibitor therapy on the extracellular collagen matrix during left ventricular assist device support in patients with end-stage heart failure. J Am Coll Cardiol 2007, 49:1166–1174.

    Article  PubMed  CAS  Google Scholar 

  36. Hon JK, Yacoub MH: Bridge to recovery with the use of left ventricular assist device and clenbuterol. Ann Thorac Surg 2003, 75(6 Suppl):S36–S41.

    Article  PubMed  Google Scholar 

  37. Abraham WT, Fisher WG, Smith AL, et al.: Cardiac resynchronization in chronic heart failure: N Engl J Med 2002, 346:1845–1853.

    Article  PubMed  Google Scholar 

  38. McAlister FA, Ezekowitz J, Hooton N, et al.: Cardiac resynchronization therapy for patients with left ventricular systolic dysfunction: a systemic review. JAMA 2007, 297:2502–2514.

    Article  PubMed  CAS  Google Scholar 

  39. Young JB, Abraham WT, Smith AL, et al.: Combined cardiac resynchronization and implantable cardioversion defibrillation in advanced chronic heart failure: the MIRACLE ICD Trial. JAMA 2003, 289:2685–2694.

    Article  PubMed  Google Scholar 

  40. St John Sutton MG, Plappert T, Abraham WT, et al.: Effect of cardiac resynchronization therapy on left ventricular size and function in chronic heart failure. Circulation 2003, 107:1985–1990.

    Article  PubMed  Google Scholar 

  41. Jugdutt BI: Prevention of ventricular remodelling post myocardial infarction: timing and duration of therapy. Can J Cardiol 1993, 9:103–114.

    PubMed  CAS  Google Scholar 

  42. Acorn Cardiovascular. Available at http://www.acorncv.com/about_acorn. Accessed October 2008.

  43. Sabbah HN, Sharov VG, Gupta RC, et al.: Reversal of chronic molecular and cellular abnormalities due to heart failure by passive mechanical ventricular containment. Circ Res 2003, 93:1095–1101.

    Article  PubMed  CAS  Google Scholar 

  44. Sabbah HN: Global left ventricular remodeling with the Acorn Cardiac Support Device: hemodynamic and angiographic findings in dogs with heart failure. Heart Fail Rev 2005, 10:109–115.

    Article  PubMed  Google Scholar 

  45. Mann DL, Acker MA, Jessup M, et al.: Clinical evaluation of the CorCap Cardiac Support Device in patients with dilated cardiomyopathy. Ann Thorac Surg 2007, 84:1226–1235.

    Article  PubMed  Google Scholar 

  46. Starling RC, Jessup M, Oh JK, et al.: Sustained benefits of the CorCap Cardiac Support Device on left ventricular remodeling: three year follow-up results from the Acorn clinical trial. Ann Thorac Surg 2007, 84:1236–1242.

    Article  PubMed  Google Scholar 

  47. McGee EC, Gillinov AM, McCarthy PM: Reverse ventricular remodeling: mechanical options. Curr Opin Cardiol 2006, 21:215–220.

    Article  PubMed  Google Scholar 

  48. Magovern JA: Experimental and clinical studies with the Paracor cardiac restraint device. Semin Thorac Cardiovasc Surg 2005, 17:364–368.

    Article  PubMed  Google Scholar 

  49. Fukamachi K, McCarthy PM: Initial safety and feasibility clinical trial of the myosplint device. J Card Surg 2005, 20:S43–S47.

    Article  PubMed  Google Scholar 

  50. Grossi EA, Saunders PC, Woo YJ, et al.: Intraoperative effects of the coapsys annuloplasty system in a randomized evaluation (RESTOR-MV) of functional ischemic mitral regurgitation. Ann Thorac Surg 2005, 80:1706–1711.

    Article  PubMed  Google Scholar 

  51. Grossi EA, Woo YJ, Schwartz CF, et al.: Comparison of Coapsys annuloplasty and internal reduction mitral annuloplasty in the randomized treatment of functional ischemic mitral regurgitation: impact on the left ventricle. J Thorac Cardiovasc Surg 2006, 131:1095–1098.

    Article  PubMed  CAS  Google Scholar 

  52. Dimmeler S, Mann DL, Zeiher A: Emerging therapies and strategies in the treatment of heart failure. In Braunwald’s Heart Disease: A Textbook of Cardiovascular Medicine. Edited by Libby P, Bonow RO, Man DL, Zipes DP. Philadelphia: Saunders Elsevier; 2008:697–715.

    Google Scholar 

  53. Dib N, Michler RE, Pagani FD, et al.: Safety and feasibility of autologous myoblast transplantation in patients with ischemic cardiomyopathy: four-year follow-up. Circulation 2005, 112:1748–1755.

    Article  PubMed  Google Scholar 

  54. Abdel-Latif A, Bolli R, Tleyjeh IM, et al.: Adult bone marrow-derived cells for cardiac repair: a systematic review and meta-analysis. Arch Intern Med 2007, 167:989–997.

    Article  PubMed  Google Scholar 

  55. Leor J, Aboulafia-Etzion S, Dar A, et al.: Bioengineered cardiac grafts: a new approach to repair the infarcted myocardium? Circulation 2000, 102(19 Suppl 3):III56–III61.

    PubMed  CAS  Google Scholar 

  56. Christman KL, Fang Q, Yee MS, et al.: Enhanced neovasculature formation in ischemic myocardium following delivery of pleiotrophin plasmid in a biopolymer. Biomaterials 2005, 26:1139–1144.

    Article  PubMed  CAS  Google Scholar 

  57. Davis ME, Hsieh PC, Takahashi T, et al.: Local myocardial insulin-like growth factor 1 (IGF-1) delivery with biotinylated peptide nanofibers improves cell therapy for myocardial infarction. Proc Natl Acad Sci U S A 2006, 103:8155–8160.

    Article  PubMed  CAS  Google Scholar 

  58. Landa N, Miller L, Feinberg MS, et al.: Effect of injectable alginate implant on cardiac remodeling and function after recent and old infarcts in rat. Circulation 2008, 117:1388–1396.

    Article  PubMed  CAS  Google Scholar 

  59. Sabbah HN: Reconstruction of the failing left ventricle with intramyocardial injections of biopolymers [abstract]. J Heart Dis 2008, 6:92.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bodh I. Jugdutt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jugdutt, B.I. Current and novel cardiac support therapies. Curr Heart Fail Rep 6, 19–27 (2009). https://doi.org/10.1007/s11897-009-0005-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11897-009-0005-9

Keywords

Navigation