Skip to main content

Advertisement

Log in

TRP-ing up Heart and Vessels: Canonical Transient Receptor Potential Channels and Cardiovascular Disease

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Transient receptor potential channels are a large superfamily of non-selective and non-voltage-gated ion channels that convey signaling information linked to a broad range of sensory inputs. In the cardiovascular system, the canonical transient receptor potential (TRPC) family has been particularly found to play a role in vascular and cardiac disease, responding to neurohormonal and mechanical load stimulation. TRPC1, TRPC3, and TRPC6 are often upregulated in models of cardiovascular disease, and their inhibition ameliorates the associated pathophysiology. Studies in gene deletion models and overexpression models of wild-type and dominant-negative proteins supports a direct role of these channels, which likely act together as heterotetramers to influence signaling. Recent evidence has further revealed the importance of protein kinase G phosphorylation as a mechanism to suppress TRPC6 channel current and dependent signaling in vascular and cardiac myocytes. This suggests a novel mechanism underlying benefits of drugs such as sildenafil, a phosphodiesterase type 5 inhibitor, nitrates, and atrial natriuretic peptides. This review describes new evidence supporting a pathophysiologic role of these three TRPC channels, and the potential utility of inhibition strategies to treat cardiovascular disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hill, J. A., & Olson, E. N. (2008). Cardiac plasticity. The New England Journal of Medicine, 358, 1370–1380.

    Article  CAS  PubMed  Google Scholar 

  2. Mudd, J. O., & Kass, D. A. (2008). Tackling heart failure in the twenty-first century. Nature, 451, 919–928.

    Article  CAS  PubMed  Google Scholar 

  3. Montell, C. (2005). The TRP superfamily of cation channels. Sci. STKE. 2005, re3.

  4. Hardie, R. C., & Minke, B. (1995). Phosphoinositide-mediated phototransduction in Drosophila photoreceptors: the role of Ca2+ and trp. Cell Calcium, 18, 256–274.

    Article  CAS  PubMed  Google Scholar 

  5. Clapham, D. E. (2003). TRP channels as cellular sensors. Nature, 426, 517–524.

    Article  CAS  PubMed  Google Scholar 

  6. Chen, J., Crossland, R. F., Noorani, M. M., & Marrelli, S. P. (2009). Inhibition of TRPC1/TRPC3 by PKG contributes to NO-mediated vasorelaxation. American Journal of Physiology Heart and Circulatory Physiology, 297, H417–H424.

    Article  CAS  PubMed  Google Scholar 

  7. Kwan, H. Y., Huang, Y., & Yao, X. (2004). Regulation of canonical transient receptor potential isoform 3 (TRPC3) channel by protein kinase G. Proceedings of the National Academy of Sciences of the United States of America, 101, 2625–2630.

    Article  CAS  PubMed  Google Scholar 

  8. Kinoshita, H., Kuwahara, K., Nishida, M., Jiang, Z., Rong, X., Kiyonaka, S., Kuwabara, Y., Kurose, H., Inoue, R., Mori, Y. et al. (2010). Inhibition of TRPC6 channel activity contributes to the antihypertrophic effects of natriuretic peptides-guanylyl cyclase-a signaling in the heart. Circulation Research, 106, 1849–1860.

    Google Scholar 

  9. Koitabashi, N., Aiba, T., Hesketh, G. G., Rowell, J., Zhang, M., Takimoto, E., et al. (2009). Cyclic GMP/PKG-dependent inhibition of TRPC6 channel activity and expression negatively regulates cardiomyocyte NFAT activation Novel mechanism of cardiac stress modulation by PDE5 inhibition. Journal of Molecular and Cellular Cardiology, 48, 713–724.

    Article  PubMed  Google Scholar 

  10. Takahashi, S., Lin, H., Geshi, N., Mori, Y., Kawarabayashi, Y., Takami, N., et al. (2008). Nitric oxide-cGMP-protein kinase G pathway negatively regulates vascular transient receptor potential channel TRPC6. Journal de Physiologie, 586, 4209–4223.

    Article  CAS  Google Scholar 

  11. Nishida, M., Watanabe, K., Sato, Y., Nakaya, M., Kitajima, N., Ide, T., et al. (2010). Phosphorylation of TRPC6 channels at Thr69 is required for anti-hypertrophic effects of phosphodiesterase 5 inhibition. The Journal of Biological Chemistry, 285, 13244–13253.

    Article  CAS  PubMed  Google Scholar 

  12. Ramsey, I. S., Delling, M., & Clapham, D. E. (2006). An introduction to TRP channels. Annual Review of Physiology, 68, 619–647.

    Article  CAS  PubMed  Google Scholar 

  13. Vazquez, G., Wedel, B. J., Aziz, O., Trebak, M., & Putney, J. W., Jr. (2004). The mammalian TRPC cation channels. Biochimica et Biophysica Acta, 1742, 21–36.

    CAS  PubMed  Google Scholar 

  14. Ambudkar, I. S., Ong, H. L., Liu, X., Bandyopadhyay, B. C., & Cheng, K. T. (2007). TRPC1: the link between functionally distinct store-operated calcium channels. Cell Calcium, 42, 213–223.

    Article  CAS  PubMed  Google Scholar 

  15. Inoue, R., Jian, Z., & Kawarabayashi, Y. (2009). Mechanosensitive TRP channels in cardiovascular pathophysiology. Pharmacology & Therapeutics, 123, 371–385.

    Article  CAS  Google Scholar 

  16. Sharif-Naeini, R., Folgering, J. H., Bichet, D., Duprat, F., Delmas, P., Patel, A., et al. (2010). Sensing pressure in the cardiovascular system: Gq-coupled mechanoreceptors and TRP channels. Journal of Molecular and Cellular Cardiology, 48, 83–89.

    Article  CAS  PubMed  Google Scholar 

  17. Abramowitz, J., & Birnbaumer, L. (2009). Physiology and pathophysiology of canonical transient receptor potential channels. The FASEB Journal, 23, 297–328.

    Article  CAS  PubMed  Google Scholar 

  18. Oh-hora, M. (2009). Calcium signaling in the development and function of T-lineage cells. Immunological Reviews, 231, 210–224.

    Article  CAS  PubMed  Google Scholar 

  19. Pigozzi, D., Ducret, T., Tajeddine, N., Gala, J. L., Tombal, B., & Gailly, P. (2006). Calcium store contents control the expression of TRPC1, TRPC3 and TRPV6 proteins in LNCaP prostate cancer cell line. Cell Calcium, 39, 401–415.

    Article  CAS  PubMed  Google Scholar 

  20. Kuwahara, K., Wang, Y., McAnally, J., Richardson, J. A., Bassel-Duby, R., Hill, J. A., et al. (2006). TRPC6 fulfills a calcineurin signaling circuit during pathologic cardiac remodeling. The Journal of Clinical Investigation, 116, 3114–3126.

    Article  CAS  PubMed  Google Scholar 

  21. Paria, B. C., Malik, A. B., Kwiatek, A. M., Rahman, A., May, M. J., Ghosh, S., et al. (2003). Tumor necrosis factor-alpha induces nuclear factor-kappaB-dependent TRPC1 expression in endothelial cells. The Journal of Biological Chemistry, 278, 37195–37203.

    Article  CAS  PubMed  Google Scholar 

  22. Di, A., & Malik, A. B. (2010). TRP channels and the control of vascular function. Current Opinion in Pharmacology, 10, 127–132.

    Article  CAS  PubMed  Google Scholar 

  23. Yuan, J. P., Zeng, W., Huang, G. N., Worley, P. F., & Muallem, S. (2007). STIM1 heteromultimerizes TRPC channels to determine their function as store-operated channels. Nature Cell Biology, 9, 636–645.

    Article  CAS  PubMed  Google Scholar 

  24. DeHaven, W. I., Jones, B. F., Petranka, J. G., Smyth, J. T., Tomita, T., Bird, G. S., et al. (2009). TRPC channels function independently of STIM1 and Orai1. Journal de Physiologie, 587, 2275–2298.

    Article  CAS  Google Scholar 

  25. Yao, X. (2007). TRPC, cGMP-dependent protein kinases and cytosolic Ca2+. Handbook of Experimental Pharmacology, 179, 527–540.

    Article  CAS  PubMed  Google Scholar 

  26. Ahmmed, G. U., Mehta, D., Vogel, S., Holinstat, M., Paria, B. C., Tiruppathi, C., et al. (2004). Protein kinase Calpha phosphorylates the TRPC1 channel and regulates store-operated Ca2+ entry in endothelial cells. The Journal of Biological Chemistry, 279, 20941–20949.

    Article  CAS  PubMed  Google Scholar 

  27. Alfonso, S., Benito, O., Alicia, S., Angelica, Z., Patricia, G., Diana, K., et al. (2008). Regulation of the cellular localization and function of human transient receptor potential channel 1 by other members of the TRPC family. Cell Calcium, 43, 375–387.

    Article  CAS  PubMed  Google Scholar 

  28. Hofmann, T., Schaefer, M., Schultz, G., & Gudermann, T. (2002). Subunit composition of mammalian transient receptor potential channels in living cells. Proceedings of the National Academy of Sciences of the United States of America, 99, 7461–7466.

    Article  CAS  PubMed  Google Scholar 

  29. Strubing, C., Krapivinsky, G., Krapivinsky, L., & Clapham, D. E. (2003). Formation of novel TRPC channels by complex subunit interactions in embryonic brain. The Journal of Biological Chemistry, 278, 39014–39019.

    Article  PubMed  Google Scholar 

  30. Lintschinger, B., Balzer-Geldsetzer, M., Baskaran, T., Graier, W. F., Romanin, C., Zhu, M. X., et al. (2000). Coassembly of Trp1 and Trp3 proteins generates diacylglycerol- and Ca2+-sensitive cation channels. The Journal of Biological Chemistry, 275, 27799–27805.

    CAS  PubMed  Google Scholar 

  31. Ng, L. C., McCormack, M. D., Airey, J. A., Singer, C. A., Keller, P. S., Shen, X. M., et al. (2009). TRPC1 and STIM1 mediate capacitative Ca2+ entry in mouse pulmonary arterial smooth muscle cells. Journal de Physiologie, 587, 2429–2442.

    Article  CAS  Google Scholar 

  32. Sweeney, M., Yu, Y., Platoshyn, O., Zhang, S., McDaniel, S. S., & Yuan, J. X. (2002). Inhibition of endogenous TRP1 decreases capacitative Ca2+ entry and attenuates pulmonary artery smooth muscle cell proliferation. American Journal of Physiology. Lung Cellular and Molecular Physiology, 283, L144–L155.

    CAS  PubMed  Google Scholar 

  33. Dietrich, A., Kalwa, H., Fuchs, B., Grimminger, F., Weissmann, N., & Gudermann, T. (2007). In vivo TRPC functions in the cardiopulmonary vasculature. Cell Calcium, 42, 233–244.

    Article  CAS  PubMed  Google Scholar 

  34. Ohba, T., Watanabe, H., Murakami, M., Takahashi, Y., Iino, K., Kuromitsu, S., et al. (2007). Upregulation of TRPC1 in the development of cardiac hypertrophy. Journal of Molecular and Cellular Cardiology, 42, 498–507.

    Article  CAS  PubMed  Google Scholar 

  35. Seth, M., Zhang, Z. S., Mao, L., Graham, V., Burch, J., Stiber, J., et al. (2009). TRPC1 channels are critical for hypertrophic signaling in the heart. Circulation Research, 105, 1023–1030.

    Article  CAS  PubMed  Google Scholar 

  36. Vindis, C., D'Angelo, R., Mucher, E., Negre-Salvayre, A., Parini, A., & Mialet-Perez, J. (2010). Essential role of TRPC1 channels in cardiomyoblasts hypertrophy mediated by 5-HT2A serotonin receptors. Biochemical and Biophysical Research Communications, 391, 979–983.

    Article  CAS  PubMed  Google Scholar 

  37. Spassova, M. A., Hewavitharana, T., Xu, W., Soboloff, J., & Gill, D. L. (2006). A common mechanism underlies stretch activation and receptor activation of TRPC6 channels. Proceedings of the National Academy of Sciences of the United States of America, 103, 16586–16591.

    Article  CAS  PubMed  Google Scholar 

  38. Inoue, R., Jensen, L. J., Jian, Z., Shi, J., Hai, L., Lurie, A. I., et al. (2009). Synergistic activation of vascular TRPC6 channel by receptor and mechanical stimulation via phospholipase C/diacylglycerol and phospholipase A2/omega-hydroxylase/20-HETE pathways. Circulation Research, 104, 1399–1409.

    Article  CAS  PubMed  Google Scholar 

  39. Dietrich, A., & Gudermann, T. (2007). TRPC6. Handbook of Experimental Pharmacology 125-141.

  40. Dietrich, A., Mederos, Y. S., Gollasch, M., Gross, V., Storch, U., Dubrovska, G., et al. (2005). Increased vascular smooth muscle contractility in TRPC6−/− mice. Molecular and Cellular Biology, 25, 6980–6989.

    Article  CAS  PubMed  Google Scholar 

  41. Liu, D., Yang, D., He, H., Chen, X., Cao, T., Feng, X., et al. (2009). Increased transient receptor potential canonical type 3 channels in vasculature from hypertensive rats. Hypertension, 53, 70–76.

    Article  CAS  PubMed  Google Scholar 

  42. Bush, E. W., Hood, D. B., Papst, P. J., Chapo, J. A., Minobe, W., Bristow, M. R., et al. (2006). Canonical transient receptor potential channels promote cardiomyocyte hypertrophy through activation of calcineurin signaling. The Journal of Biological Chemistry, 281, 33487–33496.

    Article  CAS  PubMed  Google Scholar 

  43. Thilo, F., Loddenkemper, C., Berg, E., Zidek, W., & Tepel, M. (2009). Increased TRPC3 expression in vascular endothelium of patients with malignant hypertension. Modern Pathology, 22, 426–430.

    Article  CAS  PubMed  Google Scholar 

  44. Onohara, N., Nishida, M., Inoue, R., Kobayashi, H., Sumimoto, H., Sato, Y., et al. (2006). TRPC3 and TRPC6 are essential for angiotensin II-induced cardiac hypertrophy. The EMBO Journal, 25, 5305–5316.

    Article  CAS  PubMed  Google Scholar 

  45. Nakayama, H., Wilkin, B. J., Bodi, I., & Molkentin, J. D. (2006). Calcineurin-dependent cardiomyopathy is activated by TRPC in the adult mouse heart. The FASEB Journal, 20, 1660–1670.

    Article  CAS  PubMed  Google Scholar 

  46. Shan, D., Marchase, R. B., & Chatham, J. C. (2008). Overexpression of TRPC3 increases apoptosis but not necrosis in response to ischemia-reperfusion in adult mouse cardiomyocytes. American Journal of Physiology. Cell Physiology, 294, C833–C841.

    Article  CAS  PubMed  Google Scholar 

  47. Wu, X., Eder, P., Chang, B., & Molkentin, J. D. (2010). TRPC channels are necessary mediators of pathologic cardiac hypertrophy. Proceedings of the National Academy of Sciences of the United States of America, 107, 7000–7005.

    Article  CAS  PubMed  Google Scholar 

  48. Eder, P., Probst, D., Rosker, C., Poteser, M., Wolinski, H., Kohlwein, S. D., et al. (2007). Phospholipase C-dependent control of cardiac calcium homeostasis involves a TRPC3-NCX1 signaling complex. Cardiovascular Research, 73, 111–119.

    Article  CAS  PubMed  Google Scholar 

  49. Rinne, A., Banach, K., & Blatter, L. A. (2009). Regulation of nuclear factor of activated T cells (NFAT) in vascular endothelial cells. Journal of Molecular and Cellular Cardiology, 47, 400–410.

    Article  CAS  PubMed  Google Scholar 

  50. Dietrich, A., Schnitzler, M., Emmel, J., Kalwa, H., Hofmann, T., & Gudermann, T. (2003). N-linked protein glycosylation is a major determinant for basal TRPC3 and TRPC6 channel activity. The Journal of Biological Chemistry, 278, 47842–47852.

    Article  CAS  PubMed  Google Scholar 

  51. Zhang, Z., Tang, J., Tikunova, S., Johnson, J. D., Chen, Z., Qin, N., et al. (2001). Activation of Trp3 by inositol 1, 4, 5-trisphosphate receptors through displacement of inhibitory calmodulin from a common binding domain. Proceedings of the National Academy of Sciences of the United States of America, 98, 3168–3173.

    Article  CAS  PubMed  Google Scholar 

  52. Weissmann, N., Dietrich, A., Fuchs, B., Kalwa, H., Ay, M., Dumitrascu, R., et al. (2006). Classical transient receptor potential channel 6 (TRPC6) is essential for hypoxic pulmonary vasoconstriction and alveolar gas exchange. Proceedings of the National Academy of Sciences of the United States of America, 103, 19093–19098.

    Article  CAS  PubMed  Google Scholar 

  53. Poburko, D., Liao, C. H., Lemos, V. S., Lin, E., Maruyama, Y., Cole, W. C., et al. (2007). Transient receptor potential channel 6-mediated, localized cytosolic [Na+] transients drive Na+/Ca2+ exchanger-mediated Ca2+ entry in purinergically stimulated aorta smooth muscle cells. Circulation Research, 101, 1030–1038.

    Article  CAS  PubMed  Google Scholar 

  54. Boulay, G. (2002). Ca(2+)-calmodulin regulates receptor-operated Ca(2+) entry activity of TRPC6 in HEK-293 cells. Cell Calcium, 32, 201–207.

    Article  CAS  PubMed  Google Scholar 

  55. Kwon, Y., Hofmann, T., & Montell, C. (2007). Integration of phosphoinositide- and calmodulin-mediated regulation of TRPC6. Molecular Cell, 25, 491–503.

    Article  CAS  PubMed  Google Scholar 

  56. Soboloff, J., Spassova, M., Hewavitharana, T., He, L. P., Luncsford, P., Xu, W., et al. (2007). TRPC channels: integrators of multiple cellular signals. Handbook of Experimental Pharmacology, 179, 575–591.

    Article  CAS  PubMed  Google Scholar 

  57. Kiyonaka, S., Kato, K., Nishida, M., Mio, K., Numaga, T., Sawaguchi, Y., et al. (2009). Selective and direct inhibition of TRPC3 channels underlies biological activities of a pyrazole compound. Proceedings of the National Academy of Sciences of the United States of America, 106, 5400–5405.

    Article  CAS  PubMed  Google Scholar 

  58. Foster, R. R., Zadeh, M. A., Welsh, G. I., Satchell, S. C., Ye, Y., Mathieson, P. W., et al. (2009). Flufenamic acid is a tool for investigating TRPC6-mediated calcium signalling in human conditionally immortalised podocytes and HEK293 cells. Cell Calcium, 45, 384–390.

    Article  CAS  PubMed  Google Scholar 

  59. Wang, C., Li, J. F., Zhao, L., Liu, J., Wan, J., Wang, Y. X., et al. (2009). Inhibition of SOC/Ca2+/NFAT pathway is involved in the anti-proliferative effect of sildenafil on pulmonary artery smooth muscle cells. Respiratory Research, 10, 123.

    Article  PubMed  Google Scholar 

  60. Kinoshita, H., Kuwahara, K., Nishida, M., Jiang, Z., Rong, X., Kiyonaka, S., et al. (2010). Inhibition of TRPC6 channel activity contributes to the antihypertrophic effects of natriuretic peptides-guanylyl cyclase-a signaling in the heart. Res: Circ.

    Google Scholar 

  61. Takimoto, E., Koitabashi, N., Hsu, S., Ketner, E. A., Nagayama, T., Bedja, D., et al. (2009). RGS2 mediates cardiac compensation to pressure-overload and anti-hypertrophic effects of PDE5 inhibition. The Journal of Clinical Investigation, 119, 408–420.

    CAS  PubMed  Google Scholar 

  62. Tokudome, T., Kishimoto, I., Horio, T., Arai, Y., Schwenke, D. O., Hino, J., et al. (2008). Regulator of G-protein signaling subtype 4 mediates antihypertrophic effect of locally secreted natriuretic peptides in the heart. Circulation, 117, 2329–2339.

    Article  CAS  PubMed  Google Scholar 

  63. Winn, M. P., Conlon, P. J., Lynn, K. L., Farrington, M. K., Creazzo, T., Hawkins, A. F., et al. (2005). A mutation in the TRPC6 cation channel causes familial focal segmental glomerulosclerosis. Science, 308, 1801–1804.

    Article  CAS  PubMed  Google Scholar 

  64. Lansman, J. B., & Franco-Obregon, A. (2006). Mechanosensitive ion channels in skeletal muscle: a link in the membrane pathology of muscular dystrophy. Clinical and Experimental Pharmacology & Physiology, 33, 649–656.

    Article  CAS  Google Scholar 

  65. Williams, I. A., & Allen, D. G. (2007). Intracellular calcium handling in ventricular myocytes from mdx mice. American Journal of Physiology. Heart and Circulatory Physiology, 292, H846–H855.

    Article  CAS  PubMed  Google Scholar 

  66. Colsoul, B., Nilius, B., & Vennekens, R. (2009). On the putative role of transient receptor potential cation channels in asthma. Clinical and Experimental Allergy, 39, 1456–1466.

    Article  CAS  PubMed  Google Scholar 

  67. Sharif-Naeini, R., Folgering, J. H., Bichet, D., Duprat, F., Delmas, P., Patel, A., et al. (2009). Sensing pressure in the cardiovascular system: Gq-coupled mechanoreceptors and TRP channels. Journal of Molecular and Cellular Cardiology, 48(1), 83–89.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Kass.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rowell, J., Koitabashi, N. & Kass, D.A. TRP-ing up Heart and Vessels: Canonical Transient Receptor Potential Channels and Cardiovascular Disease. J. of Cardiovasc. Trans. Res. 3, 516–524 (2010). https://doi.org/10.1007/s12265-010-9208-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-010-9208-4

Keywords

Navigation