Skip to main content
Log in

ACE-Inhibitors in Hypertension: A Historical Perspective and Current Insights

  • Antihypertensive Agents: Mechanisms of Drug Action (M Ernst, Section Editor)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review describes the discovery and development of ACE inhibitors as antihypertensive agents, compares their efficacy, tolerability, and safety to ARBs, and highlights the contemporary issues surrounding ACE inhibitor use for HTN.

Recent Findings

Angiotensin-converting enzyme (ACE) inhibitors are commonly prescribed medications for the management of hypertension (HTN) and other chronic conditions including heart failure and chronic kidney disease. These agents inhibit ACE, the enzyme that is responsible for converting angiotensin (AT) I to AT II. Inhibiting the synthesis of AT II causes arterial and venous vasodilation, natriuresis, and a decrease in sympathetic activity, resulting in the reduction of blood pressure. ACE inhibitors are first-line therapy in HTN management along with thiazide diuretics, calcium channel blockers, and angiotensin receptor blockers (ARB). Along with inhibiting AT II synthesis, inhibition of ACE causes accumulation of bradykinin, increasing the risk of bradykinin-mediated side effects like angioedema and cough. Since ARBs do not work on ACE in the renin-angiotensin system, the risk of angioedema and cough are lower with ARBs. Recent evidence has also suggested ARBs may have neuroprotective effects compared to other antihypertensives, including ACE inhibitors; however, this warrants further study.

Summary

Currently, ACE inhibitors and ARBs have an equal class of recommendation for first-line treatment for the management of HTN. Recent evidence has shown ARBs to be just as effective as ACE inhibitors for HTN but with improved tolerability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •  Of importance •• Of major importance

  1. Sica DA. The evolution of renin-angiotensin blockade: angiotensin-converting enzyme inhibitors as the starting point. Curr Hypertens Rep. 2010;12(2):67–73. https://doi.org/10.1007/s11906-010-0091-9.

    Article  CAS  PubMed  Google Scholar 

  2. Leading 20 U.S. pharma products by total prescriptions in 2020. Statista. Sept 2022. Accessed 5 Apr 2023. https://www.statista.com/statistics/233986/top-us-pharma-products-by-prescriptions/.

  3. Whelton PK, Carey RM, Aronow WS, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines [published correction appears in Hypertension. 2018 Jun;71(6):e140–e144]. Hypertension. 2018;71(6):e13–e115. https://doi.org/10.1161/HYP.0000000000000065.

  4. Kidney Disease: Improving Global Outcomes (KDIGO) Blood Pressure Work Group. KDIGO 2021 Clinical Practice Guideline for the Management of Blood Pressure in Chronic Kidney Disease. Kidney Int. 2021;99(3S):S1–S87. https://doi.org/10.1016/j.kint.2020.11.003.

  5. Heidenreich PA, Bozkurt B, Aguilar D, et al. 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. J Am Coll Cardiol. 2022;79(17):e263–421. https://doi.org/10.1016/j.jacc.2021.12.012.

    Article  PubMed  Google Scholar 

  6. Atlas SA. The renin-angiotensin aldosterone system: pathophysiological role and pharmacologic inhibition. J Manag Care Pharm. 2007;13(8 Suppl B):9–20. https://doi.org/10.18553/jmcp.2007.13.s8-b.9.

  7. Ferreira SH. Bradykinin-potentiating factor (BPF) present in the venom of bothrops jararca. Br J Pharmacol Chemother. 1965;24(1):163–9. https://doi.org/10.1111/j.1476-5381.1965.tb02091.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cushman DW, Ondetti MA. History of the design of captopril and related inhibitors of angiotensin converting enzyme. Hypertension. 1991;17(4):589–92. https://doi.org/10.1161/01.hyp.17.4.589.

    Article  CAS  PubMed  Google Scholar 

  9. • Gavras H, Brunner HR, Turini GA, et al. Antihypertensive effect of the oral angiotensin converting-enzyme inhibitor SQ 14225 in man. N Engl J Med. 1978;298(18):991–5. https://doi.org/10.1056/NEJM197805042981803First publication to report the potential of ACE inhibition for hypertension in humans.

  10. Heran BS, Wong MM, Heran IK, Wright JM. Blood pressure lowering efficacy of angiotensin converting enzyme (ACE) inhibitors for primary hypertension. Cochrane Database Syst Rev. 2008;2008(4):CD003823. Published 2008. https://doi.org/10.1002/14651858.CD003823.pub2.

  11. Heran BS, Wong MM, Heran IK, Wright JM. Blood pressure lowering efficacy of angiotensin receptor blockers for primary hypertension. Cochrane Database Syst Rev. 2008;2008(4):CD003822. Published 2008. https://doi.org/10.1002/14651858.CD003822.pub2.

  12. Musini VM, Nazer M, Bassett K, Wright JM. Blood pressure-lowering efficacy of monotherapy with thiazide diuretics for primary hypertension. Cochrane Database Syst Rev. 2014;(5):CD003824. Published 2014. https://doi.org/10.1002/14651858.CD003824.pub2.

  13. ALLHAT Officers and Coordinators for the ALLHAT Collaborative Research Group. The Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial. Major outcomes in high-risk hypertensive patients randomized to angiotensin-converting enzyme inhibitor or calcium channel blocker vs diuretic: The Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). JAMA. 2002;288(23):2981–2997. https://doi.org/10.1001/jama.288.23.2981.

  14. Ravid D, Lishner M, Lang R, Ravid M. Angiotensin-converting enzyme inhibitors and cough: a prospective evaluation in hypertension and in congestive heart failure. J Clin Pharmacol. 1994;34(11):1116–20. https://doi.org/10.1002/j.1552-4604.1994.tb01989.x.

    Article  CAS  PubMed  Google Scholar 

  15. Israili ZH, Hall WD. Cough and angioneurotic edema associated with angiotensin-converting enzyme inhibitor therapy. A review of the literature and pathophysiology. Ann Intern Med. 1992;117(3):234–242. https://doi.org/10.7326/0003-4819-117-3-234.

  16. Fox AJ, Lalloo UG, Belvisi MG, Bernareggi M, Chung KF, Barnes PJ. Bradykinin-evoked sensitization of airway sensory nerves: a mechanism for ACE-inhibitor cough. Nat Med. 1996;2(7):814–7. https://doi.org/10.1038/nm0796-814.

    Article  CAS  PubMed  Google Scholar 

  17. Dicpinigaitis PV. Angiotensin-converting enzyme inhibitor-induced cough: ACCP evidence-based clinical practice guidelines. Chest. 2006;129(1 Suppl):169S–173S. https://doi.org/10.1378/chest.129.1_suppl.169S.

    Article  CAS  PubMed  Google Scholar 

  18. Kostis WJ, Shetty M, Chowdhury YS, Kostis JB. ACE Inhibitor-Induced Angioedema: a Review. Curr Hypertens Rep. 2018;20(7):55. Published 2018. https://doi.org/10.1007/s11906-018-0859-x.

  19. Kostis JB, Kim HJ, Rusnak J, et al. Incidence and characteristics of angioedema associated with enalapril. Arch Intern Med. 2005;165(14):1637–42. https://doi.org/10.1001/archinte.165.14.1637.

    Article  CAS  PubMed  Google Scholar 

  20. Slater EE, Merrill DD, Guess HA, et al. Clinical profile of angioedema associated with angiotensin converting-enzyme inhibition. JAMA. 1988;260(7):967–70.

    Article  CAS  PubMed  Google Scholar 

  21. Miller DR, Oliveria SA, Berlowitz DR, Fincke BG, Stang P, Lillienfeld DE. Angioedema incidence in US veterans initiating angiotensin-converting enzyme inhibitors. Hypertension. 2008;51(6):1624–30. https://doi.org/10.1161/HYPERTENSIONAHA.108.110270.

    Article  CAS  PubMed  Google Scholar 

  22. Messerli FH, Nussberger J. Vasopeptidase inhibition and angio-oedema. Lancet. 2000;356(9230):608–9. https://doi.org/10.1016/S0140-6736(00)02596-4.

    Article  CAS  PubMed  Google Scholar 

  23. Baş M, Greve J, Stelter K, et al. A randomized trial of icatibant in ACE-inhibitor-induced angioedema. N Engl J Med. 2015;372(5):418–25. https://doi.org/10.1056/NEJMoa1312524.

    Article  CAS  PubMed  Google Scholar 

  24. Sinert R, Levy P, Bernstein JA, et al. Randomized Trial of Icatibant for Angiotensin-Converting Enzyme Inhibitor-Induced Upper Airway Angioedema. J Allergy Clin Immunol Pract. 2017;5(5):1402–1409.e3. https://doi.org/10.1016/j.jaip.2017.03.003.

    Article  PubMed  Google Scholar 

  25. Lewis LM, Graffeo C, Crosley P, et al. Ecallantide for the acute treatment of angiotensin-converting enzyme inhibitor-induced angioedema: a multicenter, randomized, controlled trial. Ann Emerg Med. 2015;65(2):204–13. https://doi.org/10.1016/j.annemergmed.2014.07.014.

    Article  PubMed  Google Scholar 

  26. Vallejo Ardila DL, Walsh KA, Fifis T, et al. Immunomodulatory effects of renin-angiotensin system inhibitors on T lymphocytes in mice with colorectal liver metastases. J Immunother Cancer. 2020;8(1):e000487. https://doi.org/10.1136/jitc-2019-000487.

  27. Hicks BM, Filion KB, Yin H, Sakr L, Udell JA, Azoulay L. Angiotensin converting enzyme inhibitors and risk of lung cancer: population based cohort study. BMJ. 2018;363:k4209. Published 2018 Oct 24. https://doi.org/10.1136/bmj.k4209.

  28. Lin SY, Lin CL, Lin CC, et al. Association between Angiotensin-Converting Enzyme Inhibitors and Lung Cancer-A Nationwide, Population-Based, Propensity Score-Matched Cohort Study. Cancers (Basel). 2020;12(3):747. Published 2020. https://doi.org/10.3390/cancers12030747.

  29. Kristensen KB, Hicks B, Azoulay L, Pottegård A. Use of ACE (Angiotensin-Converting Enzyme) Inhibitors and Risk of Lung Cancer: A Nationwide Nested Case-Control Study. Circ Cardiovasc Qual Outcomes. 2021;14(1):e006687. https://doi.org/10.1161/CIRCOUTCOMES.120.006687.

  30. Wang Z, Wei L, Yin C, Li W, Wan B. Angiotensin Receptor Blocker Associated with a Decreased Risk of Lung Cancer: An Updated Meta-Analysis. J Pers Med. 2023;13(2):243. Published 2023. https://doi.org/10.3390/jpm13020243.

  31. Batais M, Almigbal T, Alotaibi K, et al. Angiotensin converting enzyme inhibitors and risk of lung cancer: A systematic review and meta-analysis. Medicine (Baltimore). 2021;100(17):e25714. https://doi.org/10.1097/MD.0000000000025714.

  32. Wu Z, Yao T, Wang Z, et al. Association between angiotensin-converting enzyme inhibitors and the risk of lung cancer: a systematic review and meta-analysis. Br J Cancer. 2023;128(2):168–76. https://doi.org/10.1038/s41416-022-02029-5.

    Article  CAS  PubMed  Google Scholar 

  33. Bangalore S, Kumar S, Kjeldsen SE, et al. Antihypertensive drugs and risk of cancer: network meta-analyses and trial sequential analyses of 324,168 participants from randomised trials. Lancet Oncol. 2011;12(1):65–82. https://doi.org/10.1016/S1470-2045(10)70260-6.

    Article  CAS  PubMed  Google Scholar 

  34. Momoniat T, Ilyas D, Bhandari S. ACE inhibitors and ARBs: Managing potassium and renal function. Cleve Clin J Med. 2019;86(9):601–7. https://doi.org/10.3949/ccjm.86a.18024.

    Article  PubMed  Google Scholar 

  35. Schoolwerth AC, Sica DA, Ballermann BJ, Wilcox CS; Council on the Kidney in Cardiovascular Disease and the Council for High Blood Pressure Research of the American Heart Association. Renal considerations in angiotensin converting enzyme inhibitor therapy: a statement for healthcare professionals from the Council on the Kidney in Cardiovascular Disease and the Council for High Blood Pressure Research of the American Heart Association. Circulation. 2001;104(16):1985–1991. https://doi.org/10.1161/hc4101.096153.

  36. Hirsch S. Pre-renal success. Kidney Int. 2012;81(6):596–7. https://doi.org/10.1038/ki.2011.418.

    Article  PubMed  Google Scholar 

  37. Hundemer GL, Sood MM. Hyperkalemia with RAAS inhibition: Mechanism, clinical significance, and management. Pharmacol Res. 2021;172:105835. https://doi.org/10.1016/j.phrs.2021.105835.

  38. Fox KM. EURopean trial On reduction of cardiac events with Perindopril in stable coronary Artery disease Investigators. Efficacy of perindopril in reduction of cardiovascular events among patients with stable coronary artery disease: randomised, double-blind, placebo-controlled, multicentre trial (the EUROPA study). Lancet. 2003;362(9386):782–788. https://doi.org/10.1016/s0140-6736(03)14286-9.

  39. Heart Outcomes Prevention Evaluation Study Investigators, Yusuf S, Sleight P, et al. Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients [published correction appears in 2000 May 4;342(18):1376] [published correction appears in N Engl J Med 2000 Mar 9;342(10):748]. N Engl J Med. 2000;342(3):145–153. https://doi.org/10.1056/NEJM200001203420301.

  40. Yusuf S, Diener HC, Sacco RL, et al. Telmisartan to prevent recurrent stroke and cardiovascular events. N Engl J Med. 2008;359(12):1225–37. https://doi.org/10.1056/NEJMoa0804593.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Messerli FH, Bavishi C, Bangalore S. Why Are We Still Prescribing Angiotensin-Converting Enzyme Inhibitors? Circulation. 2022;145(6):413–5. https://doi.org/10.1161/CIRCULATIONAHA.121.057835.

    Article  CAS  PubMed  Google Scholar 

  42. Park C, Wang G, Durthaler JM, Fang J. Cost-effectiveness Analyses of Antihypertensive Medicines: A Systematic Review. Am J Prev Med. 2017;53(6S2):S131–S142. https://doi.org/10.1016/j.amepre.2017.06.020.

  43. ONTARGET Investigators, Yusuf S, Teo KK, et al. Telmisartan, ramipril, or both in patients at high risk for vascular events. N Engl J Med. 2008;358(15):1547–1559. https://doi.org/10.1056/NEJMoa0801317.

  44. Bremner AD, Baur M, Oddou-Stock P, Bodin F. Valsartan: long-term efficacy and tolerability compared to lisinopril in elderly patients with essential hypertension. Clin Exp Hypertens. 1997;19(8):1263–85. https://doi.org/10.3109/10641969709083217.

    Article  CAS  PubMed  Google Scholar 

  45. Barnett AH, Bain SC, Bouter P, et al. Angiotensin-receptor blockade versus converting-enzyme inhibition in type 2 diabetes and nephropathy [published correction appears in N Engl J Med. 2005 Apr 21;352(16)1731]. N Engl J Med. 2004;351(19):1952–1961. https://doi.org/10.1056/NEJMoa042274.

  46. Spinar J, Vítovec J, Souček M, Dušek L, Pavlík T; CORD investigators. CORD: COmparison of Recommended Doses of ace inhibitors and angiotensin II receptor blockers. Int J Cardiol. 2010;144(2):293–294. https://doi.org/10.1016/j.ijcard.2009.02.022.

  47. Bangalore S, Fakheri R, Toklu B, Ogedegbe G, Weintraub H, Messerli FH. Angiotensin-Converting Enzyme Inhibitors or Angiotensin Receptor Blockers in Patients Without Heart Failure? Insights From 254,301 Patients From Randomized Trials. Mayo Clin Proc. 2016;91(1):51–60. https://doi.org/10.1016/j.mayocp.2015.10.019.

    Article  CAS  PubMed  Google Scholar 

  48. Li EC, Heran BS, Wright JM. Angiotensin converting enzyme (ACE) inhibitors versus angiotensin receptor blockers for primary hypertension. Cochrane Database Syst Rev. 2014;2014(8):CD009096. Published 2014 Aug 22. https://doi.org/10.1002/14651858.CD009096.pub2.

  49. Sanders GD, Coeytaux R, Dolor RJ, et al. Angiotensin-Converting Enzyme Inhibitors (ACEIs), Angiotensin II Receptor Antagonists (ARBs), and Direct Renin Inhibitors for Treating Essential Hypertension: An Update. Rockville (MD): Agency for Healthcare Research and Quality (US); June 2011.

  50. •• Chen R, Suchard MA, Krumholz HM, et al. Comparative First-Line Effectiveness and Safety of ACE (Angiotensin-Converting Enzyme) Inhibitors and Angiotensin Receptor Blockers: A Multinational Cohort Study. Hypertension. 2021;78(3):591–603. https://doi.org/10.1161/HYPERTENSIONAHA.120.166. ARBs have similar antihypertensive effectiveness as ACE inhibitors but with a better safety profile.

    Article  CAS  PubMed  Google Scholar 

  51. Walker KA, Power MC, Gottesman RF. Defining the Relationship Between Hypertension, Cognitive Decline, and Dementia: a Review. Curr Hypertens Rep. 2017;19(3):24. https://doi.org/10.1007/s11906-017-0724-3.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Goh KL, Bhaskaran K, Minassian C, Evans SJ, Smeeth L, Douglas IJ. Angiotensin receptor blockers and risk of dementia: cohort study in UK Clinical Practice Research Datalink. Br J Clin Pharmacol. 2015;79(2):337–50. https://doi.org/10.1111/bcp.12511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ho JK, Nation DA. Alzheimer’s Disease Neuroimaging Initiative. Memory is preserved in older adults taking AT1 receptor blockers. Alzheimers Res Ther. 2017;9(1):33. Published 2017. https://doi.org/10.1186/s13195-017-0255-9.

  54. • Hajjar I, Okafor M, McDaniel D, et al. Effects of Candesartan vs Lisinopril on Neurocognitive Function in Older Adults With Executive Mild Cognitive Impairment: A Randomized Clinical Trial. JAMA Netw Open. 2020;3(8):e2012252. Published 2020. https://doi.org/10.1001/jamanetworkopen.2020.12252Randomized trial demonstrating potential neurocognitive benefits with candesartan compared to lisinopril.

  55. Deng Z, Jiang J, Wang J, et al. Angiotensin Receptor Blockers Are Associated With a Lower Risk of Progression From Mild Cognitive Impairment to Dementia. Hypertension. 2022;79(10):2159–69. https://doi.org/10.1161/HYPERTENSIONAHA.122.19378.

    Article  CAS  PubMed  Google Scholar 

  56. •• Ho JK, Moriarty F, Manly JJ, et al. Blood-Brain Barrier Crossing Renin-Angiotensin Drugs and Cognition in the Elderly: A Meta-Analysis. Hypertension. 2021;78(3):629–43. https://doi.org/10.1161/HYPERTENSIONAHA.121.17049. Suggests possible links between blood-brain barrier crossing renin-angiotensin drugs and less memory decline.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dave L. Dixon.

Ethics declarations

Conflict of Interest

Anarug Menta—Research Grant from VCU Health Pauley Heart Center. Benjamin VanTassell—Novo Nordisk Research Grant, Novartis Research Grant, Kiniksa Pharmaceuticals Consulting Fees, and Implicit Bioscience Consulting Fees. Dave Dixon—Boehringer Ingelheim Research Grant. Stacey Cutrell, Ibrahim S. Alhomoud, and Azita Talasaz declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cutrell, S., Alhomoud, I.S., Mehta, A. et al. ACE-Inhibitors in Hypertension: A Historical Perspective and Current Insights. Curr Hypertens Rep 25, 243–250 (2023). https://doi.org/10.1007/s11906-023-01248-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11906-023-01248-2

Keywords

Navigation