Skip to main content
Log in

Stem Cell Therapy for Chronic Myocardial Infarction

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Although recent advances for the treatment of myocardial infarction have dramatically increased the rate of survival after the ischemic event, this has also led to a rise in the number of chronic patients, making the finding of a suitable therapy a compulsory subject for modern medicine. Over the last decade, stem cells have been a promise for the cure of several diseases not only due to their plasticity but also to their capacity to act in a paracrine manner and influence the affected tissue, prompting the launching of several clinical trials. In spite of the knowledge already acquired, stem cell application to chronically infarcted hearts has been much less approached than its acute counterpart. Through this review, we will focus in stem cell therapy in animal models of chronic myocardial infarction: cell types employed, functional results, mechanisms analyzed, and questions raised.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Reference

  1. Adamopoulos, S., Parissis, J. T., & Kremastinos, D. T. (2001). A glossary of circulating cytokines in chronic heart failure. European Journal of Heart Failure, 3, 517–526.

    Article  CAS  PubMed  Google Scholar 

  2. Agbulut, O., Mazo, M., Bressolle, C., Gutierrez, M., Azarnoush, K., Sabbah, L., et al. (2006). Can bone marrow-derived multipotent adult progenitor cells regenerate infarcted myocardium? Cardiovascular Research, 72, 175–183.

    Article  CAS  PubMed  Google Scholar 

  3. Armstrong, P. W., Granger, C. B., Adams, P. X., Hamm, C., Holmes, D., Jr., O'Neill, W. W., et al. (2007). Pexelizumab for acute ST-elevation myocardial infarction in patients undergoing primary percutaneous coronary intervention: A randomized controlled trial. JAMA, 297, 43–51.

    Article  CAS  PubMed  Google Scholar 

  4. Bai, X., Pinkernell, K., Song, Y. H., Nabzdyk, C., Reiser, J., & Alt, E. (2007). Genetically selected stem cells from human adipose tissue express cardiac markers. Biochemical and Biophysical Research Communications, 353, 665–671.

    Article  CAS  PubMed  Google Scholar 

  5. Behfar, A., Faustino, R. S., Arrell, D. K., Dzeja, P. P., Perez-Terzic, C., & Terzic, A. (2008). Guided stem cell cardiopoiesis: Discovery and translation. Journal of Molecular and Cellular Cardiology, 45, 523–529.

    Article  CAS  PubMed  Google Scholar 

  6. Bonaros, N., Rauf, R., Werner, E., Schlechta, B., Rohde, E., Kocher, A., et al. (2008). Neoangiogenesis after combined transplantation of skeletal myoblasts and angiopoietic progenitors leads to increased cell engraftment and lower apoptosis rates in ischemic heart failure. Interact Cardiovasc Thorac Surg, 7, 249–255.

    Article  PubMed  Google Scholar 

  7. Bonaros, N., Rauf, R., Wolf, D., Margreiter, E., Tzankov, A., Schlechta, B., et al. (2006). Combined transplantation of skeletal myoblasts and angiopoietic progenitor cells reduces infarct size and apoptosis and improves cardiac function in chronic ischemic heart failure. Journal of Thoracic and Cardiovascular Surgery, 132, 1321–1328.

    Article  PubMed  Google Scholar 

  8. Breitbach, M., Bostani, T., Roell, W., Xia, Y., Dewald, O., Nygren, J. M., et al. (2007). Potential risks of bone marrow cell transplantation into infarcted hearts. Blood, 110, 1362–1369.

    Article  CAS  PubMed  Google Scholar 

  9. Bujak, M. & Frangogiannis, N. G. (2007). The role of TGF-beta signaling in myocardial infarction and cardiac remodeling. Cardiovascular Research, 74, 184–195.

    Article  CAS  PubMed  Google Scholar 

  10. Caspi, O., Huber, I., Kehat, I., Habib, M., Arbel, G., Gepstein, A., et al. (2007). Transplantation of human embryonic stem cell-derived cardiomyocytes improves myocardial performance in infarcted rat hearts. Journal of the American College of Cardiology, 50, 1884–1893.

    Article  PubMed  Google Scholar 

  11. Cleutjens, J. P., Kandala, J. C., Guarda, E., Guntaka, R. V., & Weber, K. T. (1995). Regulation of collagen degradation in the rat myocardium after infarction. Journal of Molecular and Cellular Cardiology, 27, 1281–1292.

    Article  CAS  PubMed  Google Scholar 

  12. Chang, S. A., Lee, E. J., Kang, H. J., Zhang, S. Y., Kim, J. H., Li, L., et al. (2008). Impact of myocardial infarct proteins and oscillating pressure on the differentiation of mesenchymal stem cells: Effect of acute myocardial infarction on stem cell differentiation. Stem Cells, 26, 1901–1912.

    Article  CAS  PubMed  Google Scholar 

  13. Desmouliere, A., Chaponnier, C., & Gabbiani, G. (2005). Tissue repair, contraction, and the myofibroblast. Wound Repair and Regeneration, 13, 7–12.

    Article  PubMed  Google Scholar 

  14. Deten, A., Volz, H. C., Briest, W., & Zimmer, H. G. (2002). Cardiac cytokine expression is upregulated in the acute phase after myocardial infarction. Experimental studies in rats. Cardiovascular Research, 55, 329–340.

    Article  CAS  PubMed  Google Scholar 

  15. Ertl, G. & Frantz, S. (2005). Healing after myocardial infarction. Cardiovascular Research, 66, 22–32.

    Article  CAS  PubMed  Google Scholar 

  16. Farahmand, P., Lai, T. Y., Weisel, R. D., Fazel, S., Yau, T., Menasche, P., et al. (2008). Skeletal myoblasts preserve remote matrix architecture and global function when implanted early or late after coronary ligation into infarcted or remote myocardium. Circulation, 118, S130–137.

    Article  PubMed  Google Scholar 

  17. Fishbein, M. C., Maclean, D., & Maroko, P. R. (1978). Experimental myocardial infarction in the rat: Qualitative and quantitative changes during pathologic evolution. American Journal of Pathology, 90, 57–70.

    CAS  PubMed  Google Scholar 

  18. Frangogiannis, N. G., Perrard, J. L., Mendoza, L. H., Burns, A. R., Lindsey, M. L., Ballantyne, C. M., et al. (1998). Stem cell factor induction is associated with mast cell accumulation after canine myocardial ischemia and reperfusion. Circulation, 98, 687–698.

    CAS  PubMed  Google Scholar 

  19. Frangogiannis, N. G., Smith, C. W., & Entman, M. L. (2002). The inflammatory response in myocardial infarction. Cardiovascular Research, 53, 31–47.

    Article  CAS  PubMed  Google Scholar 

  20. Fukushima, S., Coppen, S. R., Lee, J., Yamahara, K., Felkin, L. E., Terracciano, C. M., et al. (2008). Choice of cell-delivery route for skeletal myoblast transplantation for treating post-infarction chronic heart failure in rat. PLoS ONE, 3, e3071.

    Article  PubMed  CAS  Google Scholar 

  21. Fyhrquist, F. & Saijonmaa, O. (2008). Renin–angiotensin system revisited. Journal of Internal Medicine, 264, 224–236.

    Article  CAS  PubMed  Google Scholar 

  22. Gavira, J. J., Herreros, J., Perez, A., Garcia-Velloso, M. J., Barba, J., Martin-Herrero, F., et al. (2006). Autologous skeletal myoblast transplantation in patients with nonacute myocardial infarction: 1-year follow-up. Journal of Thoracic and Cardiovascular Surgery, 131, 799–804.

    Article  PubMed  Google Scholar 

  23. Gavira, J. J., Nasarre, E., Abizanda, G., Perez-Ilzarbe, M., de Martino-Rodriguez, A., Garcia de Jalon, J. A. et al. (2009). Repeated implantation of skeletal myoblast in a swine model of chronic myocardial infarction. European Heart Journal (in press).

  24. Gavira, J. J., Perez-Ilzarbe, M., Abizanda, G., Garcia-Rodriguez, A., Orbe, J., Paramo, J. A., et al. (2006). A comparison between percutaneous and surgical transplantation of autologous skeletal myoblasts in a swine model of chronic myocardial infarction. Cardiovascular Research, 71, 744–753.

    Article  CAS  PubMed  Google Scholar 

  25. Hamad, E., Mather, P. J., Srinivasan, S., Rubin, S., Whellan, D. J., & Feldman, A. M. (2007). Pharmacologic therapy of chronic heart failure. American Journal of Cardiovascular Drugs, 7, 235–248.

    Article  CAS  PubMed  Google Scholar 

  26. He, Q., Trindade, P. T., Stumm, M., Li, J., Zammaretti, P., Bettiol, E., et al. (2009). Fate of undifferentiated mouse embryonic stem cells within the rat heart: Role of myocardial infarction and immune suppression. Journal of Cellular and Molecular Medicine, 13, 188–201.

    Article  PubMed  Google Scholar 

  27. Holmes, J. W., Borg, T. K., & Covell, J. W. (2005). Structure and mechanics of healing myocardial infarcts. Annual Review of Biomedical Engineering, 7, 223–253.

    Article  CAS  PubMed  Google Scholar 

  28. Irwin, M. W., Mak, S., Mann, D. L., Qu, R., Penninger, J. M., Yan, A., et al. (1999). Tissue expression and immunolocalization of tumor necrosis factor-alpha in postinfarction dysfunctional myocardium. Circulation, 99, 1492–1498.

    CAS  PubMed  Google Scholar 

  29. Kastrup, J., Ripa, R. S., Wang, Y., & Jorgensen, E. (2006). Myocardial regeneration induced by granulocyte-colony-stimulating factor mobilization of stem cells in patients with acute or chronic ischaemic heart disease: A non-invasive alternative for clinical stem cell therapy? European Heart Journal, 27, 2748–2754.

    Article  CAS  PubMed  Google Scholar 

  30. Kinnaird, T., Stabile, E., Burnett, M. S., Lee, C. W., Barr, S., Fuchs, S., et al. (2004). Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circulation Research, 94, 678–685.

    Article  CAS  PubMed  Google Scholar 

  31. Koh, G. Y., Klug, M. G., Soonpaa, M. H., & Field, L. J. (1993). Differentiation and long-term survival of C2C12 myoblast grafts in heart. Journal of Clinical Investigation, 92, 1548–1554.

    Article  CAS  PubMed  Google Scholar 

  32. Laflamme, M. A., Chen, K. Y., Naumova, A. V., Muskheli, V., Fugate, J. A., Dupras, S. K., et al. (2007). Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nature Biotechnology, 25, 1015–1024.

    Article  CAS  PubMed  Google Scholar 

  33. Landa, N., Miller, L., Feinberg, M. S., Holbova, R., Shachar, M., Freeman, I., et al. (2008). Effect of injectable alginate implant on cardiac remodeling and function after recent and old infarcts in rat. Circulation, 117, 1388–1396.

    Article  CAS  PubMed  Google Scholar 

  34. Le Blanc, K. (2006). Mesenchymal stromal cells: Tissue repair and immune modulation. Cytotherapy, 8, 559–561.

    Article  CAS  PubMed  Google Scholar 

  35. Leobon, B., Roncalli, J., Joffre, C., Mazo, M., Boisson, M., Barreau, C., et al. (2009). Adipose-derived cardiomyogenic cells: In vitro expansion and functional improvement in a mouse model of myocardial infarction. Cardiovascular Research, 83, 757–767.

    Article  CAS  PubMed  Google Scholar 

  36. Li, L., Zhang, S., Zhang, Y., Yu, B., Xu, Y., & Guan, Z. (2008). Paracrine action mediate the antifibrotic effect of transplanted mesenchymal stem cells in a rat model of global heart failure. Molecular Biology Reports, 36, 725–731.

    Article  PubMed  CAS  Google Scholar 

  37. Li, R. K., Mickle, D. A., Weisel, R. D., Rao, V., & Jia, Z. Q. (2001). Optimal time for cardiomyocyte transplantation to maximize myocardial function after left ventricular injury. Annals of Thoracic Surgery, 72, 1957–1963.

    Article  CAS  PubMed  Google Scholar 

  38. Li, S. H., Lai, T. Y., Sun, Z., Han, M., Moriyama, E., Wilson, B., et al. (2009). Tracking cardiac engraftment and distribution of implanted bone marrow cells: Comparing intra-aortic, intravenous, and intramyocardial delivery. Journal of Thoracic and Cardiovascular Surgery, 137, 1225–1233. e1221.

    Article  PubMed  Google Scholar 

  39. Liu, J. F., Wang, B. W., Hung, H. F., Chang, H., & Shyu, K. G. (2008). Human mesenchymal stem cells improve myocardial performance in a splenectomized rat model of chronic myocardial infarction. Journal of the Formosan Medical Association, 107, 165–174.

    Article  PubMed  Google Scholar 

  40. Mann, D. L. (1999). Mechanisms and models in heart failure: A combinatorial approach. Circulation, 100, 999–1008.

    CAS  PubMed  Google Scholar 

  41. Mann, D. L., Deswal, A., Bozkurt, B., & Torre-Amione, G. (2002). New therapeutics for chronic heart failure. Annual Review of Medicine, 53, 59–74.

    Article  CAS  PubMed  Google Scholar 

  42. Martinez-Fernandez, A., Nelson, T. J., Yamada, S., Reyes, S., Alekseev, A. E., Perez-Terzic, C., et al. (2009). iPS programmed without c-MYC yield proficient cardiogenesis for functional heart chimerism. Circulation Research, 105, 648–656.

    Article  CAS  PubMed  Google Scholar 

  43. Mauritz, C., Schwanke, K., Reppel, M., Neef, S., Katsirntaki, K., Maier, L. S., et al. (2008). Generation of functional murine cardiac myocytes from induced pluripotent stem cells. Circulation, 118, 507–517.

    Article  PubMed  Google Scholar 

  44. Mazo, M. (2009). Transplantation of mesenchymal stem cells exerts a greater long-term effect than bone marrow mononuclear cells in a chronic myocardial infarction model in rat. Cell Transplant. doi:10.3727/096368909X480323.

  45. Mazo, M., Planat-Benard, V., Abizanda, G., Pelacho, B., Leobon, B., Gavira, J. J., et al. (2008). Transplantation of adipose derived stromal cells is associated with functional improvement in a rat model of chronic myocardial infarction. European Journal of Heart Failure, 10, 454–462.

    Article  PubMed  Google Scholar 

  46. Menasche, P. (2009). Stem cell therapy for heart failure: Are arrhythmias a real safety concern? Circulation, 119, 2735–2740.

    Article  PubMed  Google Scholar 

  47. Menasche, P., Alfieri, O., Janssens, S., McKenna, W., Reichenspurner, H., Trinquart, L., et al. (2008). The Myoblast Autologous Grafting in Ischemic Cardiomyopathy (MAGIC) Trial: First randomized placebo-controlled study of myoblast transplantation. Circulation, 117, 1189–1200.

    Article  PubMed  Google Scholar 

  48. Merx, M. W., Zernecke, A., Liehn, E. A., Schuh, A., Skobel, E., Butzbach, B., et al. (2005). Transplantation of human umbilical vein endothelial cells improves left ventricular function in a rat model of myocardial infarction. Basic Research in Cardiology, 100, 208–216.

    Article  PubMed  Google Scholar 

  49. Mias, C., Lairez, O., Trouche, E., Roncalli, J., Calise, D., Seguelas, M. H. et al. (2009). Mesenchymal stem cells promote matrix metalloproteinase secretion by cardiac fibroblasts and reduce cardiac ventricular fibrosis after myocardial infarction. Stem Cells, 27(11), 2734–2743.

    Google Scholar 

  50. Miranville, A., Heeschen, C., Sengenes, C., Curat, C. A., Busse, R., & Bouloumie, A. (2004). Improvement of postnatal neovascularization by human adipose tissue-derived stem cells. Circulation, 110, 349–355.

    Article  CAS  PubMed  Google Scholar 

  51. Miyahara, Y., Nagaya, N., Kataoka, M., Yanagawa, B., Tanaka, K., Hao, H., et al. (2006). Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction. Nature Medicine, 12, 459–465.

    Article  CAS  PubMed  Google Scholar 

  52. Nahrendorf, M., Swirski, F. K., Aikawa, E., Stangenberg, L., Wurdinger, T., Figueiredo, J. L., et al. (2007). The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. Journal of Experimental Medicine, 204, 3037–3047.

    Article  CAS  PubMed  Google Scholar 

  53. Nakajima, H., Sakakibara, Y., Tambara, K., Marui, A., Yoshimoto, M., Premaratne, G. U., et al. (2008). Delivery route in bone marrow cell transplantation should be optimized according to the etiology of heart disease. Circ J, 72, 1528–1535.

    Article  PubMed  Google Scholar 

  54. Nelson, T. J., Martinez-Fernandez, A., Yamada, S., Perez-Terzic, C., Ikeda, Y., Terzic, A. (2009) Repair of acute myocardial infarction with induced pluripotent stem cells induced by human stemness factors. Circulation. doi:10.1161/CIRCULATIONAHA.109.865154.

  55. Nian, M., Lee, P., Khaper, N., & Liu, P. (2004). Inflammatory cytokines and postmyocardial infarction remodeling. Circulation Research, 94, 1543–1553.

    Article  CAS  PubMed  Google Scholar 

  56. Nussbaum, J., Minami, E., Laflamme, M. A., Virag, J. A., Ware, C. B., Masino, A., et al. (2007). Transplantation of undifferentiated murine embryonic stem cells in the heart: Teratoma formation and immune response. FASEB Journal, 21, 1345–1357.

    Article  CAS  PubMed  Google Scholar 

  57. Organization WH (2004) The world health report 2004.

  58. Orlic, D., Kajstura, J., Chimenti, S., Bodine, D. M., Leri, A., & Anversa, P. (2001). Transplanted adult bone marrow cells repair myocardial infarcts in mice. Annals of the New York Academy of Sciences, 938, 221–229. discussion 229–230.

    Article  CAS  PubMed  Google Scholar 

  59. Orlic, D., Kajstura, J., Chimenti, S., Jakoniuk, I., Anderson, S. M., Li, B., et al. (2001). Bone marrow cells regenerate infarcted myocardium. Nature, 410, 701–705.

    Article  CAS  PubMed  Google Scholar 

  60. Ott, H. C., Matthiesen, T. S., Goh, S. K., Black, L. D., Kren, S. M., Netoff, T. I., et al. (2008). Perfusion-decellularized matrix: Using nature’s platform to engineer a bioartificial heart. Nature Medicine, 14, 213–221.

    Article  CAS  PubMed  Google Scholar 

  61. Pearl, J. & Wu, J. C. (2008). Seeing is believing: Tracking cells to determine the effects of cell transplantation. Seminars in Thoracic and Cardiovascular Surgery, 20, 102–109.

    Article  PubMed  Google Scholar 

  62. Pelacho, B. & Prosper, F. (2008). Stem cells and cardiac disease: Where are we going? Curr Stem Cell Res Ther, 3, 265–276.

    Article  CAS  PubMed  Google Scholar 

  63. Perez-Ilzarbe, M., Agbulut, O., Pelacho, B., Ciorba, C., San, Jose-Eneriz E., Desnos, M., et al. (2008). Characterization of the paracrine effects of human skeletal myoblasts transplanted in infarcted myocardium. European Journal of Heart Failure, 10, 1065–1072.

    Article  CAS  PubMed  Google Scholar 

  64. Pfannkuche, K., Liang, H., Hannes, T., Xi, J., Fatima, A., Nguemo, F., et al. (2009). Cardiac myocytes derived from murine reprogrammed fibroblasts: Intact hormonal regulation, cardiac ion channel expression and development of contractility. Cellular Physiology and Biochemistry, 24, 73–86.

    Article  CAS  PubMed  Google Scholar 

  65. Phillips, H. R., O’Connor, C. M., & Rogers, J. (2007). Revascularization for heart failure. American Heart Journal, 153, 65–73.

    Article  PubMed  Google Scholar 

  66. Planat-Benard, V., Menard, C., Andre, M., Puceat, M., Perez, A., Garcia-Verdugo, J. M., et al. (2004). Spontaneous cardiomyocyte differentiation from adipose tissue stroma cells. Circulation Research, 94, 223–229.

    Article  CAS  PubMed  Google Scholar 

  67. Puymirat, E., Geha, R., Tomescot, A., Bellamy, V., Larghero, J., Trinquart, L., et al. (2009). Can mesenchymal stem cells induce tolerance to cotransplanted human embryonic stem cells? Molecular Therapy, 17, 176–182.

    Article  CAS  PubMed  Google Scholar 

  68. Richard, V., Murry, C. E., & Reimer, K. A. (1995). Healing of myocardial infarcts in dogs. Effects of late reperfusion. Circulation, 92, 1891–1901.

    CAS  PubMed  Google Scholar 

  69. Roger, V. L., Weston, S. A., Redfield, M. M., Hellermann-Homan, J. P., Killian, J., Yawn, B. P., et al. (2004). Trends in heart failure incidence and survival in a community-based population. Jama, 292, 344–350.

    Article  CAS  PubMed  Google Scholar 

  70. Rossen, R. D., Michael, L. H., Kagiyama, A., Savage, H. E., Hanson, G., Reisberg, M. A., et al. (1988). Mechanism of complement activation after coronary artery occlusion: Evidence that myocardial ischemia in dogs causes release of constituents of myocardial subcellular origin that complex with human C1q in vivo. Circulation Research, 62, 572–584.

    CAS  PubMed  Google Scholar 

  71. Rota, M., Kajstura, J., Hosoda, T., Bearzi, C., Vitale, S., Esposito, G., et al. (2007). Bone marrow cells adopt the cardiomyogenic fate in vivo. Proceedings of the National Academy of Sciences of the United States of America, 104, 17783–17788.

    Article  CAS  PubMed  Google Scholar 

  72. Schaffler, A. & Buchler, C. (2007). Concise review: Adipose tissue-derived stromal cells—Basic and clinical implications for novel cell-based therapies. Stem Cells, 25, 818–827.

    Article  PubMed  CAS  Google Scholar 

  73. Schuleri, K. H., Feigenbaum, G. S., Centola, M., Weiss, E. S., Zimmet, J. M., Turney, J., et al. (2009). Autologous mesenchymal stem cells produce reverse remodelling in chronic ischaemic cardiomyopathy. European Heart Journal, 30, 2722–2732.

    Article  PubMed  Google Scholar 

  74. Segers, V. F. & Lee, R. T. (2008). Stem-cell therapy for cardiac disease. Nature, 451, 937–942.

    Article  CAS  PubMed  Google Scholar 

  75. Shanmugam, G. & Legare, J. F. (2008). Revascularization for ischaemic cardiomyopathy. Current Opinion in Cardiology, 23, 148–152.

    Article  PubMed  Google Scholar 

  76. Shintani, Y., Fukushima, S., Varela-Carver, A., Lee, J., Coppen, S. R., Takahashi, K., et al. (2009). Donor cell type-specific paracrine effects of cell transplantation for post-infarction heart failure. Journal of Molecular and Cellular Cardiology, 47, 288–295.

    Article  CAS  PubMed  Google Scholar 

  77. Silva, G. V., Litovsky, S., Assad, J. A., Sousa, A. L., Martin, B. J., Vela, D., et al. (2005). Mesenchymal stem cells differentiate into an endothelial phenotype, enhance vascular density, and improve heart function in a canine chronic ischemia model. Circulation, 111, 150–156.

    Article  CAS  PubMed  Google Scholar 

  78. Strem, B. M., Hicok, K. C., Zhu, M., Wulur, I., Alfonso, Z., Schreiber, R. E., et al. (2005). Multipotential differentiation of adipose tissue-derived stem cells. Keio Journal of Medicine, 54, 132–141.

    Article  CAS  PubMed  Google Scholar 

  79. Sun, Y., Kiani, M. F., Postlethwaite, A. E., & Weber, K. T. (2002). Infarct scar as living tissue. Basic Research in Cardiology, 97, 343–347.

    Article  PubMed  Google Scholar 

  80. Takahashi, K. & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126, 663–676.

    Article  CAS  PubMed  Google Scholar 

  81. Takehara, N., Tsutsumi, Y., Tateishi, K., Ogata, T., Tanaka, H., Ueyama, T., et al. (2008). Controlled delivery of basic fibroblast growth factor promotes human cardiosphere-derived cell engraftment to enhance cardiac repair for chronic myocardial infarction. J Am Coll Cardiol, 52, 1858–1865.

    Article  CAS  PubMed  Google Scholar 

  82. Taylor, D. A., Atkins, B. Z., Hungspreugs, P., Jones, T. R., Reedy, M. C., Hutcheson, K. A., et al. (1998). Regenerating functional myocardium: Improved performance after skeletal myoblast transplantation. Nature Medicine, 4, 929–933.

    Article  CAS  PubMed  Google Scholar 

  83. van Amerongen, M. J., Bou-Gharios, G., Popa, E., van Ark, J., Petersen, A. H., van Dam, G. M., et al. (2008). Bone marrow-derived myofibroblasts contribute functionally to scar formation after myocardial infarction. J Pathol, 214, 377–386.

    Article  PubMed  Google Scholar 

  84. Vandervelde, S., van Amerongen, M. J., Tio, R. A., Petersen, A. H., van Luyn, M. J., & Harmsen, M. C. (2006). Increased inflammatory response and neovascularization in reperfused vs. non-reperfused murine myocardial infarction. Cardiovasc Pathol, 15, 83–90.

    Article  PubMed  Google Scholar 

  85. Virag, J. I. & Murry, C. E. (2003). Myofibroblast and endothelial cell proliferation during murine myocardial infarct repair. American Journal of Pathology, 163, 2433–2440.

    PubMed  Google Scholar 

  86. Waksman, R., Fournadjiev, J., Baffour, R., Pakala, R., Hellinga, D., Leborgne, L., et al. (2004). Transepicardial autologous bone marrow-derived mononuclear cell therapy in a porcine model of chronically infarcted myocardium. Cardiovasc Radiat Med, 5, 125–131.

    Article  PubMed  Google Scholar 

  87. Weisman, H. F., Bush, D. E., Mannisi, J. A., Weisfeldt, M. L., & Healy, B. (1988). Cellular mechanisms of myocardial infarct expansion. Circulation, 78, 186–201.

    CAS  PubMed  Google Scholar 

  88. Yu, J., Christman, K. L., Chin, E., Sievers, R. E., Saeed, M., & Lee, R. J. (2009). Restoration of left ventricular geometry and improvement of left ventricular function in a rodent model of chronic ischemic cardiomyopathy. Journal of Thoracic and Cardiovascular Surgery, 137, 180–187.

    Article  PubMed  Google Scholar 

  89. Yu, J., Gu, Y., Du, K. T., Mihardja, S., Sievers, R. E., & Lee, R. J. (2008). The effect of injected RGD modified alginate on angiogenesis and left ventricular function in a chronic rat infarct model. Biomaterials, 30, 751–756.

    Article  PubMed  CAS  Google Scholar 

  90. Zhang, J., Wilson, G. F., Soerens, A. G., Koonce, C. H., Yu, J., Palecek, S. P., et al. (2009). Functional cardiomyocytes derived from human induced pluripotent stem cells. Circulation Research, 104, e30–41.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felipe Prósper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mazo, M., Pelacho, B. & Prósper, F. Stem Cell Therapy for Chronic Myocardial Infarction. J. of Cardiovasc. Trans. Res. 3, 79–88 (2010). https://doi.org/10.1007/s12265-009-9159-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-009-9159-9

Keywords

Navigation