Skip to main content

Advertisement

Log in

The Biological Basis of Thrombosis and Bleeding in Patients with Ventricular Assist Devices

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

The clinical success of left ventricular assist devices (LVADs) has been tempered by significant hemorrhagic and thromboembolic complications. In the case of LVADs, where the biomaterial is in direct contact with the blood circulation, significant changes in systemic immunologic and thrombostatic functions have been well documented. Although further investigation is warranted, significant advances have been made in both cellular biology and LVAD technology to better understand the delicate balance between the procoagulant milieu predisposing to thrombosis and the risks of both surgical and non-surgical bleeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Frazier, O. H., Rose, E. A., Oz, M. C., Dembitsky, W., McCarthy, P., Radovancevic, B., et al. (2001). Multicenter clinical evaluation of the HeartMate vented electric left ventricular assist system in patients awaiting heart transplantation. Journal of Thoracic and Cardiovascular Surgery, 122, 1186–1195.

    Article  PubMed  CAS  Google Scholar 

  2. Goldstein, D. J., Oz, M. C., & Rose, E. A. (1998). Implantable left ventricular assist devices. New England Journal of Medicine, 339, 1522–1533.

    Article  PubMed  CAS  Google Scholar 

  3. Rose, E. A., Gelijns, A., Moskowitz, A. J., et al. (2001). Long-term mechanical left ventricular assistance for end-stage heart failure. New England Journal of Medicine, 345, 1435–1443.

    Article  PubMed  CAS  Google Scholar 

  4. McCarthy, P. M., Smedira, N. O., Vargo, R. L., et al. (1998). One hundred patients with the Heartmate left ventricular assist device: Evolving concepts and technology. Journal of Thoracic and Cardiovascular Surgery, 115, 904–912.

    Article  PubMed  CAS  Google Scholar 

  5. Morgan, J., John, R., Rao, V., et al. (2004). Bridging to transplant with the Heartmate left ventricular assist device: The Columbia Presbyterian twelve-year experience. Journal of Thoracic and Cardiovascular Surgery, 127, 1309–1316.

    Article  PubMed  Google Scholar 

  6. Kasirajan, V., McCarthy, P. M., Hoercher, K. J., et al. (2000). Clinical experience with long-term use of implantable left ventricular assist devices: Indications, implantation and outcomes. Seminars in Thoracic and Cardiovascular Surgery, 12, 229–237.

    PubMed  CAS  Google Scholar 

  7. Tsukui, H., Abla, A., Teuteberg, J. J., McNamara, D. M., Mathier, M. A., Cadaret, L. M., et al. (2007). Cerebrovascular accidents in patients with a ventricular assist device. Journal of Thoracic and Cardiovascular Surgery, 134, 114–123.

    Article  PubMed  Google Scholar 

  8. Goldstein, D. J., & Beauford, R. B. (2003). Left ventricular assist devices and bleeding: Adding insult to injury. Annals of Thoracic Surgery, 75, S42–S47.

    Article  PubMed  Google Scholar 

  9. Lazar, R. M., Shapiro, P. A., Jaski, B. E., Parides, M. K., Bourge, R. C., Watson, J. T., et al. (2004). Neurological events during long-term mechanical circulatory support for heart failure: The Randomized Evaluation of Mechanical Assistance for the Treatment of Congestive Heart Failure (RMATCH)experience. Circulation, 109, 2424–2427.

    Google Scholar 

  10. John, R., Kamdar, F., Liao, K., et al. (2008). Low thromboembolic risk with the HeartMate II left ventricular assist device. Journal of Thoracic and Cardiovascular Surgery (in press)

  11. Delgado, R., Frazier, O. H., Myers, T. J., et al. (2005). Direct thrombolytic therapy for intraventricular thrombosis in patients with the Jarvik 2000 left ventricular assist device. Journal of Heart and Lung Transplantation, 24, 231–233.

    Article  PubMed  Google Scholar 

  12. Griffith, B. P., Kormos, R. L., Borovetz, H. S., et al. (2001). HeartMate II left ventricular assist system: From concept to first clinical use. Annals of Thoracic Surgery, 71, 116–120.

    Article  Google Scholar 

  13. Rose, E. A., Levin, H. R., Oz, M. C., et al. (1994). Artificial circulatory support with textured interior surfaces: A counterintuitive approach to minimize thromboembolism. Circulation, 90(5 pt 2), II87–II91.

    PubMed  CAS  Google Scholar 

  14. Esmore, D., Kaye, D., Spratt, P., et al. (2008). A prospective, multicenter trial of the VentrAssist left ventricular assist device for bridge to transplant: Safety and efficacy. Journal of Heart and Lung Transplantation, 27, 579–588.

    Article  PubMed  Google Scholar 

  15. Frazier, O. H., Myers, T. J., Westaby, S., et al. (2003). Use of the Jarvik 2000 left ventricular assist system as a bridge to heart transplantation or as destination therapy for patients with chronic heart failure. Annals of Surgery, 237, 631–637.

    Article  PubMed  CAS  Google Scholar 

  16. Westaby, S., Katsumata, T., Houel, R., et al. (1998). Jarvik 2000 heart: Potential for bridge to myocyte recovery. Circulation, 98, 1568–1574.

    PubMed  CAS  Google Scholar 

  17. Frazier, O. H., Myers, T. J., Westaby, S., & Gregoric, I. D. (2004). Clinical experience with an implantable, intracardiac, continuous flow circulatory support device: Physiologic implications and their relationship to patient selection. Annals of Thoracic Surgery, 77(1), 133–142.

    Article  PubMed  CAS  Google Scholar 

  18. Haj-Yahia, S., Birks, E., Rogers, P., et al. (2007). Midterm reliability with the Jarvik 2000 axial flow left ventricular assist device. Journal of Thoracic and Cardiovascular Surgery, 134, 199–203.

    Article  PubMed  Google Scholar 

  19. Clark, R. E., Brillman, J., Davis, D. A., Lovell, M. R., Price, T. R., & Magovern, G. J. (1995). Microemboli during coronary artery bypass grafting. Journal of Thoracic and Cardiovascular Surgery, 109, 249–258.

    Article  PubMed  CAS  Google Scholar 

  20. Georgiadis, D., Grosset, D. G., Kelman, A., Faichney, A., & Lees, K. R. (1994). Prevalence and characteristics of intercranial microembolic signals in patients with different types of prosthetic cardiac valves. Stroke, 25, 587–592.

    PubMed  CAS  Google Scholar 

  21. Schmid, C., Weyand, M., Nabavi, D. G., Hammel, D., Deng, M. C., Ringelstein, E. B., et al. (1998). Cerebral and systemic embolization during left ventricular support with the Novacor N100 device. Annals of Thoracic Surgery, 65, 1703–1710.

    Article  PubMed  CAS  Google Scholar 

  22. Thoennissen, N. H., Schneider, M., Allroggen, A., Ritter, M., Dittrich, R., Schmis, C., et al. (2005). High level of cerebral microembolization in patients supported with the DeBakey left ventricular assist device. Journal of Thoracic and Cardiovascular Surgery, 130, 1159–1166.

    Article  PubMed  Google Scholar 

  23. Moazami, N., Roberts, K., Argenziano, M., Catanese, K., Mohr, J. P., Rose, E. A., et al. (1997). Asymptomatic microembolism in patients with long-term ventricular assist support. ASAIO Journal, 43, 177–180.

    Article  PubMed  CAS  Google Scholar 

  24. Nabavi, D. G., Stockmann, J., Schmid, C., Schneider, M., Hammel, D., Scheld, H. H., et al. (2003). Doppler microemboli load predicts risk of thromboembolic complications in Novacor patients. Journal of Thoracic and Cardiovascular Surgery, 126, 160–167.

    Article  PubMed  Google Scholar 

  25. Wilhelm, C. R., Ristich, J., Knepper, L. E., Holubkov, R., Wisniewski, S. R., Kormos, R. L., et al. (1999). Measurement of hemostatic indexes in conjunction with transcranial Doppler sonography in patients with ventricular assist devices. Stroke, 30, 2554–2561.

    PubMed  CAS  Google Scholar 

  26. Spanier, T. B., Oz, M. C., Levin, H. R., Weinberg, A., Stomatis, K., Stern, D., et al. (1996). Activation of coagulation and fibrinolytic pathways in patients with left ventricular assist devices. Journal of Thoracic and Cardiovascular Surgery, 112, 1090–1097.

    Article  PubMed  CAS  Google Scholar 

  27. Spanier, T. B., Chen, J. M., Oz, M. C., Stern, D. M., Rose, E. A., & Schmidt, A. M. (1999). Time-dependent cellular population of textured-surface left ventricular assist devices contributes to the development of a biphasic systemic procoagulant response. Journal of Thoracic and Cardiovascular Surgery, 118, 404–413.

    Article  PubMed  CAS  Google Scholar 

  28. Hampton, C. R., & Verrier, E. D. (2002). Systemic consequences of ventricular assist devices: Alterations of coagulation, immune function, inflammation, and the neuroendocrine system. Artificial Organs, 26, 902–908.

    Article  PubMed  Google Scholar 

  29. Livingston, E. R., Fisher, C. A., Bibidakis, E. J., Pathak, A. S., Todd, B. A., Furkawa, S., et al. (1996). Increased activation of the coagulation and fibrinolytic pathways leads to hemorrhagic complications during left ventricular assist implantation. Circulation, 94, II227–II234.

    PubMed  CAS  Google Scholar 

  30. Koster, A., Loebe, M., Hansen, R., Potapov, E. V., Noon, G. P., Kuppe, H., et al. (2000). Alterations in coagulation after implantation of a pulsatile Novacor LVAD and the axial flow MicroMed DeBakey LVAD. Annals of Thoracic Surgery, 70, 533–537.

    Article  PubMed  CAS  Google Scholar 

  31. Himmelreich, G., Ullmann, H., Riess, H., Rosch, R., Loebe, M., Schiessler, A., et al. (1995). Pathophysiologic role of contact activation in bleeding followed by thromboembolic complications after implantation of a ventricular assist device. ASAIO Journal, 41, M790–M794.

    Article  PubMed  CAS  Google Scholar 

  32. Panch, S., Hrabe, J., Solovey, A., Joyce, L., Hebbel, R., & John, R. (2007). Activation of the endothelial and coagulation systems in left ventricular assist device (LVAD) recipients. Circulation, 116, II643–II644.

    Google Scholar 

  33. Panch, S. R., Hrabe, J., Solovey, A., Toninato, C., Hebbel, R. P., & John, R. (2008). Sustained activation of vascular endothelium induces the tissue factor pathway in LVAD recipients. Journal of Heart and Lung Transplantation, 27, S93.

    Article  Google Scholar 

  34. Hebbel, R. P. (1997). Adhesive interactions of sickle erythrocytes with endothelium. Journal of Clinical Investigation, 99, 2561–2564.

    Article  PubMed  CAS  Google Scholar 

  35. Solovey, A., Gui, L., & Hebbel, R. P. (1997). Circulating activated endothelial cells in sickle cell anemia. New England Journal of Medicine, 337, 1584.

    Article  PubMed  CAS  Google Scholar 

  36. Solovey, A., Gui, L., Key, N., & Hebbel, R. P. (1998). Tissue factor expression by endothelial cells in sickle cell anemia. Journal of Clinical Investigation, 101, 1899.

    Article  PubMed  CAS  Google Scholar 

  37. Wilhelm, C. R., Ristich, J., Kormos, R. L., & Wagner, W. R. (1998). Monocyte tissue factor expression and ongoing complement generation in ventricular assist device patients. Annals of Thoracic Surgery, 65, 1071–1076.

    Article  PubMed  CAS  Google Scholar 

  38. Menconi, M. J., Prockwinse, S., Owen, T. A., Dasse, K. A., Stein, G. S., & Lian, G. B. (1995). Properties of blood-contacting surfaces of clinically implanted cardiac assist devices: Gene expression, matrix composition, and ultra structural characterization of cellular linings. Journal of Cellular Biochemistry, 57, 557–573.

    Article  PubMed  CAS  Google Scholar 

  39. Frazier, O. H., Baldwin, R. T., Eskin, S. G., & Duncan, J. M. (1993). Immunochemical identification of human endothelial cells on the lining of a ventricular assist device. Texas Heart Institute Journal, 20, 78–82.

    PubMed  CAS  Google Scholar 

  40. Kavarana, M. N., Pessin-Minsley, M. S., Urtecho, J., et al. (2002). Right ventricular dysfunction and organ failure in left-ventricular assist device recipients: A continuing problem. Annals of Thoracic Surgery, 73, 745–750.

    Article  PubMed  Google Scholar 

  41. Korfer, R., El-Banayosy, A., Arusoglu, L., et al. (2000). Single center experience with the Thoratec ventricular assist device. Journal of Thoracic and Cardiovascular Surgery, 119, 596–600.

    Article  PubMed  CAS  Google Scholar 

  42. Grossi, P., Dalla Gasperina, D., Pagani, F., et al. (2001). Infectious complications in patients with the Novacor left ventricular assist system. Transplantation Proceedings, 33, 1969–1971.

    Article  PubMed  CAS  Google Scholar 

  43. Itescu, S., & John, R. (2003). Interactions between the recipient immune system and the left ventricular assist device surface: Immunological and clinical implications. Annals of Thoracic Surgery, 75, S58–S65.

    Article  PubMed  Google Scholar 

  44. John, R., Lietz, K., Naka, Y., et al. (2003). Immunologic sensitization in recipients of left ventricular assist devices. Journal of Thoracic and Cardiovascular Surgery, 125, 578–591.

    Article  PubMed  Google Scholar 

  45. Goldstein, D. J., Seldomridge, J. A., Chen, J. M., et al. (1995). Use of aprotinin in LVAD recipients reduces blood loss, blood use and perioperative mortality. Annals of Thoracic Surgery, 59, 1063–1068.

    Article  PubMed  CAS  Google Scholar 

  46. John, R., Rajasinghe, H. A., Chen, J. M., et al. (2000). Impact of current management practices on early and late mortality in over 500 consecutive heart transplant recipients. Annals of Surgery, 232, 302–311.

    Article  PubMed  CAS  Google Scholar 

  47. Letsou, G. V., Shah, N., Gregoric, I. D., et al. (2005). Gastrointestinal bleeding from arteriovenous malformations in patients supported by the Jarvik 2000 axial-flow left ventricular assist device. Journal of Heart and Lung Transplantation, 24, 105–109.

    Article  PubMed  Google Scholar 

  48. John, R., Kamdar, F., Liao, K., et al. (2008). Improved survival and decreasing incidence of adverse events using the HeartMate II left ventricular assist device as a bridge-to-transplant. Annals of Thoracic Surgery, 86, 1227–1234.

    Google Scholar 

  49. Heyde, E. C. (1958). Gastrointestinal bleeding in aortic stenosis (letter). New England Journal of Medicine, 259, 196.

    Google Scholar 

  50. Boley, S. J., Sammarteno, R., Adams, A., et al. (1977). On the nature and etiology of vascular ectasias of the colon. Degenerative lesions of aging. Gastroenterology, 72, 650–660.

    PubMed  CAS  Google Scholar 

  51. Warkentin, T. E., Moore, J. C., & Morgan, D. G. (1992). Aortic stenosis and bleeding gastrointestinal angiodysplasia: Is acquired von Willebrand’s disease the link? Lancet, 340, 35–37.

    Article  PubMed  CAS  Google Scholar 

  52. Furlan, M. (1996). von Willebrand factor: Molecular size and functional activity. Annals of Hematology, 72, 341–348.

    Article  PubMed  CAS  Google Scholar 

  53. Ruggeri, Z. M. (2003). von Willebrand factor. Current Opinion in Hematology, 10, 142–149.

    Article  PubMed  CAS  Google Scholar 

  54. Vincentelli, A., Susen, S., Le Tourneau, T., Six, I., Fabre, O., Juthier, F., et al. (2003). Acquired von Willebrand syndrome in aortic stenosis. New England Journal of Medicine, 349, 343–349.

    Article  PubMed  Google Scholar 

  55. Geisen, U., Heilmann, C., Beyersdorf, F., et al. (2008). Non-surgical bleeding in patients with ventricular assist devices could be explained by acquired von Willebrand disease. European Journal of Cardio-thoracic Surgery, 22, 679–684.

    Article  Google Scholar 

  56. Joyce, L., John, R., Liao, K., Toninato, C., Colvin-Adams, M., Missov, E., et al. (2007). Will continuous flow left ventricular assist devices result in a higher incidence of gastrointestinal bleeding than pulsatile devices. ASAIO Journal, 53, 50A.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranjit John.

Rights and permissions

Reprints and permissions

About this article

Cite this article

John, R., Lee, S. The Biological Basis of Thrombosis and Bleeding in Patients with Ventricular Assist Devices. J. of Cardiovasc. Trans. Res. 2, 63–70 (2009). https://doi.org/10.1007/s12265-008-9072-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-008-9072-7

Keywords

Navigation