Skip to main content

Advertisement

Log in

Exosomes in Parkinson’s Disease

  • Review
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Exosomes, nano-sized extracellular vesicles secreted by most cell types, are found in all kinds of biological fluids and tissues, including the central nervous system (CNS). The proposed functions of these vesicles include roles in cell–cell signaling, removal of cellular debris, and transfer of pathogens between cells. Many studies have revealed that exosomes derived from the CNS occur in the cerebrospinal fluid and peripheral body fluids, and their contents are altered during disease, making them an appealing target for biomarker development in Parkinson’s disease (PD). Exosomes have been shown to spread toxic α-synuclein (αsyn) between cells and induce apoptosis, which suggests a key mechanism underlying the spread of αsyn aggregates in the brain and the acceleration of pathology in PD. However, potential neuroprotective roles of exosomes in PD have also been reported. On the treatment side, as drug delivery vehicles, exosomes have been used to deliver small interfering RNAs and catalase to the brain, and have shown clear therapeutic effects in a mouse model of PD. These features of exosomes in PD make them extremely interesting from the point of view of developing novel diagnostic and therapeutic approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Heijnen HF, Schiel AE, Fijnheer R, Geuze HJ, Sixma JJ. Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and alpha-granules. Blood 1999, 94: 3791–3799.

    CAS  PubMed  Google Scholar 

  2. Le Blanc I, Luyet PP, Pons V, Ferguson C, Emans N, Petiot A, et al. Endosome-to-cytosol transport of viral nucleocapsids. Nat Cell Biol 2005, 7: 653–664.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 2013, 200: 373–383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Caby MP, Lankar D, Vincendeau-Scherrer C, Raposo G, Bonnerot C. Exosomal-like vesicles are present in human blood plasma. Int Immunol 2005, 17: 879–887.

    Article  CAS  PubMed  Google Scholar 

  5. Pisitkun T, Shen RF, Knepper MA. Identification and proteomic profiling of exosomes in human urine. Proc Natl Acad Sci U S A 2004, 101: 13368–13373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ogawa Y, Kanai-Azuma M, Akimoto Y, Kawakami H, Yanoshita R. Exosome-like vesicles with dipeptidyl peptidase IV in human saliva. Biol Pharm Bull 2008, 31: 1059–1062.

    Article  CAS  PubMed  Google Scholar 

  7. Vella LJ, Greenwood DL, Cappai R, Scheerlinck JP, Hill AF. Enrichment of prion protein in exosomes derived from ovine cerebral spinal fluid. Vet Immunol Immunopathol 2008, 124: 385–393.

    Article  CAS  PubMed  Google Scholar 

  8. Kramer-Albers EM, Bretz N, Tenzer S, Winterstein C, Mobius W, Berger H, et al. Oligodendrocytes secrete exosomes containing major myelin and stress-protective proteins: Trophic support for axons? Proteomics Clin Appl 2007, 1: 1446–1461.

    Article  PubMed  Google Scholar 

  9. Simons M, Raposo G. Exosomes–vesicular carriers for intercellular communication. Curr Opin Cell Biol 2009, 21: 575–581.

    Article  CAS  PubMed  Google Scholar 

  10. Emanueli C, Shearn AI, Angelini GD, Sahoo S. Exosomes and exosomal miRNAs in cardiovascular protection and repair. Vascul Pharmacol 2015, 71: 24–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Thakur BK, Zhang H, Becker A, Matei I, Huang Y, Costa-Silva B, et al. Double-stranded DNA in exosomes: a novel biomarker in cancer detection. Cell Res 2014, 24: 766–769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bakhti M, Winter C, Simons M. Inhibition of myelin membrane sheath formation by oligodendrocyte-derived exosome-like vesicles. J Biol Chem 2011, 286: 787–796.

    Article  CAS  PubMed  Google Scholar 

  13. Faure J, Lachenal G, Court M, Hirrlinger J, Chatellard-Causse C, Blot B, et al. Exosomes are released by cultured cortical neurones. Mol Cell Neurosci 2006, 31: 642–648.

    Article  CAS  PubMed  Google Scholar 

  14. Lachenal G, Pernet-Gallay K, Chivet M, Hemming FJ, Belly A, Bodon G, et al. Release of exosomes from differentiated neurons and its regulation by synaptic glutamatergic activity. Mol Cell Neurosci 2011, 46: 409–418.

    Article  CAS  PubMed  Google Scholar 

  15. Taylor AR, Robinson MB, Gifondorwa DJ, Tytell M, Milligan CE. Regulation of heat shock protein 70 release in astrocytes: role of signaling kinases. Dev Neurobiol 2007, 67: 1815–1829.

    Article  CAS  PubMed  Google Scholar 

  16. Veith NM, Plattner H, Stuermer CA, Schulz-Schaeffer WJ, Burkle A. Immunolocalisation of PrPSc in scrapie-infected N2a mouse neuroblastoma cells by light and electron microscopy. Eur J Cell Biol 2009, 88: 45–63.

    Article  CAS  PubMed  Google Scholar 

  17. Vella LJ, Sharples RA, Lawson VA, Masters CL, Cappai R, Hill AF. Packaging of prions into exosomes is associated with a novel pathway of PrP processing. J Pathol 2007, 211: 582–590.

    Article  CAS  PubMed  Google Scholar 

  18. Guo BB, Bellingham SA, Hill AF. Stimulating the release of exosomes increases the intercellular transfer of prions. J Biol Chem 2016, 291: 5128–5137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bellingham SA, Guo BB, Coleman BM, Hill AF. Exosomes: vehicles for the transfer of toxic proteins associated with neurodegenerative diseases? Front Physiol 2012, 3: 124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Coleman BM, Hill AF. Extracellular vesicles–Their role in the packaging and spread of misfolded proteins associated with neurodegenerative diseases. Semin Cell Dev Biol 2015, 40: 89–96.

    Article  CAS  PubMed  Google Scholar 

  21. Vingtdeux V, Hamdane M, Loyens A, Gele P, Drobeck H, Begard S, et al. Alkalizing drugs induce accumulation of amyloid precursor protein by-products in luminal vesicles of multivesicular bodies. J Biol Chem 2007, 282: 18197–18205.

    Article  CAS  PubMed  Google Scholar 

  22. Perez-Gonzalez R, Gauthier SA, Kumar A, Levy E. The exosome secretory pathway transports amyloid precursor protein carboxyl-terminal fragments from the cell into the brain extracellular space. J Biol Chem 2012, 287: 43108–43115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yuyama K, Sun H, Mitsutake S, Igarashi Y. Sphingolipid-modulated exosome secretion promotes clearance of amyloid-beta by microglia. J Biol Chem 2012, 287: 10977–10989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Grad LI, Yerbury JJ, Turner BJ, Guest WC, Pokrishevsky E, O’Neill MA, et al. Intercellular propagated misfolding of wild-type Cu/Zn superoxide dismutase occurs via exosome-dependent and -independent mechanisms. Proc Natl Acad Sci U S A 2014, 111: 3620–3625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Munch C, O’Brien J, Bertolotti A. Prion-like propagation of mutant superoxide dismutase-1 misfolding in neuronal cells. Proc Natl Acad Sci U S A 2011, 108: 3548–3553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Goetzl EJ, Boxer A, Schwartz JB, Abner EL, Petersen RC, Miller BL, et al. Altered lysosomal proteins in neural-derived plasma exosomes in preclinical Alzheimer disease. Neurology 2015, 85: 40–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fiandaca MS, Kapogiannis D, Mapstone M, Boxer A, Eitan E, Schwartz JB, et al. Identification of preclinical Alzheimer’s disease by a profile of pathogenic proteins in neurally derived blood exosomes: A case-control study. Alzheimers Dement 2015, 11: 600–607 e601.

    Google Scholar 

  28. Lang AE, Lozano AM. Parkinson’s disease. Second of two parts. N Engl J Med 1998, 339: 1130–1143.

    Article  CAS  PubMed  Google Scholar 

  29. Olanow CW, Stern MB, Sethi K. The scientific and clinical basis for the treatment of Parkinson disease. Neurology 2009, 72: S1–136.

    Article  PubMed  Google Scholar 

  30. Goedert M. Alpha-synuclein and neurodegenerative diseases. Nat Rev Neurosci 2001, 2: 492–501.

    Article  CAS  PubMed  Google Scholar 

  31. Olanow CW, Tatton WG. Etiology and pathogenesis of Parkinson’s disease. Annu Rev Neurosci 1999, 22: 123–144.

    Article  CAS  PubMed  Google Scholar 

  32. Agid Y, Olanow CW, Mizuno Y. Levodopa: why the controversy? Lancet 2002, 360: 575.

    Article  CAS  PubMed  Google Scholar 

  33. Fahn S, Oakes D, Shoulson I, Kieburtz K, Rudolph A, Lang A, et al. Levodopa and the progression of Parkinson’s disease. N Engl J Med 2004, 351: 2498–2508.

    Article  CAS  PubMed  Google Scholar 

  34. Lieberman AN, Pedersen B. Levodopa and adventitious movements. Lancet 1970, 2: 985.

    Article  CAS  PubMed  Google Scholar 

  35. Celesia GG, Barr AN. Psychosis and other psychiatric manifestations of levodopa therapy. Arch Neurol 1970, 23: 193–200.

    Article  CAS  PubMed  Google Scholar 

  36. McDowell FH, Lee JE. Levodopa, Parkinson’s disease, and hypotension. Ann Intern Med 1970, 72: 751–752.

    Article  CAS  PubMed  Google Scholar 

  37. Guay DR. Rasagiline (TVP-1012): a new selective monoamine oxidase inhibitor for Parkinson’s disease. Am J Geriatr Pharmacother 2006, 4: 330–346.

    Article  CAS  PubMed  Google Scholar 

  38. Olanow CW, Schapira AH, LeWitt PA, Kieburtz K, Sauer D, Olivieri G, et al. TCH346 as a neuroprotective drug in Parkinson’s disease: a double-blind, randomised, controlled trial. Lancet Neurol 2006, 5: 1013–1020.

    Article  CAS  PubMed  Google Scholar 

  39. Kordower JH, Emborg ME, Bloch J, Ma SY, Chu Y, Leventhal L, et al. Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson’s disease. Science 2000, 290: 767–773.

    Article  CAS  PubMed  Google Scholar 

  40. Lang AE, Gill S, Patel NK, Lozano A, Nutt JG, Penn R, et al. Randomized controlled trial of intraputamenal glial cell line-derived neurotrophic factor infusion in Parkinson disease. Ann Neurol 2006, 59: 459–466.

    Article  CAS  PubMed  Google Scholar 

  41. Smeding HM, Speelman JD, Huizenga HM, Schuurman PR, Schmand B. Predictors of cognitive and psychosocial outcome after STN DBS in Parkinson’s Disease. J Neurol Neurosurg Psychiatry 2011, 82: 754–760.

    Article  PubMed  Google Scholar 

  42. Fearnley JM, Lees AJ. Ageing and Parkinson’s disease: substantia nigra regional selectivity. Brain 1991, 114 (Pt 5): 2283–2301.

    Article  PubMed  Google Scholar 

  43. Biomarkers Definitions Working G. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther 2001, 69: 89–95.

    Article  Google Scholar 

  44. Tolosa E, Wenning G, Poewe W. The diagnosis of Parkinson’s disease. Lancet Neurol 2006, 5: 75–86.

    Article  PubMed  Google Scholar 

  45. Hong Z, Shi M, Chung KA, Quinn JF, Peskind ER, Galasko D, et al. DJ-1 and alpha-synuclein in human cerebrospinal fluid as biomarkers of Parkinson’s disease. Brain 2010, 133: 713–726.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Mollenhauer B, Locascio JJ, Schulz-Schaeffer W, Sixel-Doring F, Trenkwalder C, Schlossmacher MG. alpha-Synuclein and tau concentrations in cerebrospinal fluid of patients presenting with parkinsonism: a cohort study. Lancet Neurol 2011, 10: 230–240.

    Article  CAS  PubMed  Google Scholar 

  47. Shi M, Bradner J, Hancock AM, Chung KA, Quinn JF, Peskind ER, et al. Cerebrospinal fluid biomarkers for Parkinson disease diagnosis and progression. Ann Neurol 2011, 69: 570–580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Barbour R, Kling K, Anderson JP, Banducci K, Cole T, Diep L, et al. Red blood cells are the major source of alpha-synuclein in blood. Neurodegener Dis 2008, 5: 55–59.

    Article  CAS  PubMed  Google Scholar 

  49. Marques O, Outeiro TF. Alpha-synuclein: from secretion to dysfunction and death. Cell Death Dis 2012, 3: e350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lee PH, Lee G, Park HJ, Bang OY, Joo IS, Huh K. The plasma alpha-synuclein levels in patients with Parkinson’s disease and multiple system atrophy. J Neural Transm (Vienna) 2006, 113: 1435–1439.

    Article  CAS  Google Scholar 

  51. Shi M, Zabetian CP, Hancock AM, Ginghina C, Hong Z, Yearout D, et al. Significance and confounders of peripheral DJ-1 and alpha-synuclein in Parkinson’s disease. Neurosci Lett 2010, 480: 78–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Li QX, Mok SS, Laughton KM, McLean CA, Cappai R, Masters CL, et al. Plasma alpha-synuclein is decreased in subjects with Parkinson’s disease. Exp Neurol 2007, 204: 583–588.

    Article  CAS  PubMed  Google Scholar 

  53. Shi M, Liu C, Cook TJ, Bullock KM, Zhao Y, Ginghina C, et al. Plasma exosomal alpha-synuclein is likely CNS-derived and increased in Parkinson’s disease. Acta Neuropathol 2014, 128: 639–650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Stuendl A, Kunadt M, Kruse N, Bartels C, Moebius W, Danzer KM, et al. Induction of alpha-synuclein aggregate formation by CSF exosomes from patients with Parkinson’s disease and dementia with Lewy bodies. Brain 2016, 139: 481–494.

    Article  PubMed  Google Scholar 

  55. Shi M, Kovac A, Korff A, Cook TJ, Ginghina C, Bullock KM, et al. CNS tau efflux via exosomes is likely increased in Parkinson’s disease but not in Alzheimer’s disease. Alzheimers Dement 2016, 12: 1125–1131.

    Article  PubMed  Google Scholar 

  56. Zimprich A, Biskup S, Leitner P, Lichtner P, Farrer M, Lincoln S, et al. Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron 2004, 44: 601–607.

    Article  CAS  PubMed  Google Scholar 

  57. Gilks WP, Abou-Sleiman PM, Gandhi S, Jain S, Singleton A, Lees AJ, et al. A common LRRK2 mutation in idiopathic Parkinson’s disease. Lancet 2005, 365: 415–416.

    CAS  PubMed  Google Scholar 

  58. Fraser KB, Moehle MS, Daher JP, Webber PJ, Williams JY, Stewart CA, et al. LRRK2 secretion in exosomes is regulated by 14-3-3. Hum Mol Genet 2013, 22: 4988–5000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ho DH, Yi S, Seo H, Son I, Seol W. Increased DJ-1 in urine exosome of Korean males with Parkinson’s disease. Biomed Res Int 2014, 2014: 704678.

    PubMed  PubMed Central  Google Scholar 

  60. Fraser KB, Rawlins AB, Clark RG, Alcalay RN, Standaert DG, Liu N, et al. Ser(P)-1292 LRRK2 in urinary exosomes is elevated in idiopathic Parkinson’s disease. Mov Disord 2016, 31: 1543–1550

    Article  CAS  PubMed  Google Scholar 

  61. Fraser KB, Moehle MS, Alcalay RN, West AB, Consortium LC. Urinary LRRK2 phosphorylation predicts parkinsonian phenotypes in G2019S LRRK2 carriers. Neurology 2016, 86: 994–999.

    Article  Google Scholar 

  62. Gui Y, Liu H, Zhang L, Lv W, Hu X. Altered microRNA profiles in cerebrospinal fluid exosome in Parkinson disease and Alzheimer disease. Oncotarget 2015, 6: 37043–37053.

    PubMed  PubMed Central  Google Scholar 

  63. Braak H, Del Tredici K, Rub U, de Vos RA, Jansen Steur EN, Braak E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 2003, 24: 197–211.

    Article  PubMed  Google Scholar 

  64. Kordower JH, Chu Y, Hauser RA, Freeman TB, Olanow CW. Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson’s disease. Nat Med 2008, 14: 504–506.

    Article  CAS  PubMed  Google Scholar 

  65. Desplats P, Lee HJ, Bae EJ, Patrick C, Rockenstein E, Crews L, et al. Inclusion formation and neuronal cell death through neuron-to-neuron transmission of alpha-synuclein. Proc Natl Acad Sci U S A 2009, 106: 13010–13015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lee HJ, Patel S, Lee SJ. Intravesicular localization and exocytosis of alpha-synuclein and its aggregates. J Neurosci 2005, 25: 6016–6024.

    Article  CAS  PubMed  Google Scholar 

  67. Lee HJ, Suk JE, Bae EJ, Lee SJ. Clearance and deposition of extracellular alpha-synuclein aggregates in microglia. Biochem Biophys Res Commun 2008, 372: 423–428.

    Article  CAS  PubMed  Google Scholar 

  68. Fevrier B, Raposo G. Exosomes: endosomal-derived vesicles shipping extracellular messages. Curr Opin Cell Biol 2004, 16: 415–421.

    Article  CAS  PubMed  Google Scholar 

  69. Ratajczak J, Wysoczynski M, Hayek F, Janowska-Wieczorek A, Ratajczak MZ. Membrane-derived microvesicles: important and underappreciated mediators of cell-to-cell communication. Leukemia 2006, 20: 1487–1495.

    Article  CAS  PubMed  Google Scholar 

  70. Ghidoni R, Benussi L, Binetti G. Exosomes: the Trojan horses of neurodegeneration. Med Hypotheses 2008, 70: 1226–1227.

    Article  CAS  PubMed  Google Scholar 

  71. Danzer KM, Kranich LR, Ruf WP, Cagsal-Getkin O, Winslow AR, Zhu L, et al. Exosomal cell-to-cell transmission of alpha synuclein oligomers. Mol Neurodegener 2012, 7: 42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sung JY, Kim J, Paik SR, Park JH, Ahn YS, Chung KC. Induction of neuronal cell death by Rab5A-dependent endocytosis of alpha-synuclein. J Biol Chem 2001, 276: 27441–27448.

    Article  CAS  PubMed  Google Scholar 

  73. Emmanouilidou E, Melachroinou K, Roumeliotis T, Garbis SD, Ntzouni M, Margaritis LH, et al. Cell-produced alpha-synuclein is secreted in a calcium-dependent manner by exosomes and impacts neuronal survival. J Neurosci 2010, 30: 6838–6851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Alvarez-Erviti L, Seow Y, Schapira AH, Gardiner C, Sargent IL, Wood MJ, et al. Lysosomal dysfunction increases exosome-mediated alpha-synuclein release and transmission. Neurobiol Dis 2011, 42: 360–367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Grey M, Dunning CJ, Gaspar R, Grey C, Brundin P, Sparr E, et al. Acceleration of alpha-synuclein aggregation by exosomes. J Biol Chem 2015, 290: 2969–2982.

    Article  CAS  PubMed  Google Scholar 

  76. Chang C, Lang H, Geng N, Wang J, Li N, Wang X. Exosomes of BV-2 cells induced by alpha-synuclein: important mediator of neurodegeneration in PD. Neurosci Lett 2013, 548: 190–195.

    Article  CAS  PubMed  Google Scholar 

  77. Kunadt M, Eckermann K, Stuendl A, Gong J, Russo B, Strauss K, et al. Extracellular vesicle sorting of alpha-Synuclein is regulated by sumoylation. Acta Neuropathol 2015, 129: 695–713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ramirez A, Heimbach A, Grundemann J, Stiller B, Hampshire D, Cid LP, et al. Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase. Nat Genet 2006, 38: 1184–1191.

    Article  CAS  PubMed  Google Scholar 

  79. Ramonet D, Podhajska A, Stafa K, Sonnay S, Trancikova A, Tsika E, et al. PARK9-associated ATP13A2 localizes to intracellular acidic vesicles and regulates cation homeostasis and neuronal integrity. Hum Mol Genet 2012, 21: 1725–1743.

    Article  CAS  PubMed  Google Scholar 

  80. Gitler AD, Chesi A, Geddie ML, Strathearn KE, Hamamichi S, Hill KJ, et al. Alpha-synuclein is part of a diverse and highly conserved interaction network that includes PARK9 and manganese toxicity. Nat Genet 2009, 41: 308–315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kong SM, Chan BK, Park JS, Hill KJ, Aitken JB, Cottle L, et al. Parkinson’s disease-linked human PARK9/ATP13A2 maintains zinc homeostasis and promotes alpha-Synuclein externalization via exosomes. Hum Mol Genet 2014, 23: 2816–2833.

    Article  CAS  PubMed  Google Scholar 

  82. Tomlinson PR, Zheng Y, Fischer R, Heidasch R, Gardiner C, Evetts S, et al. Identification of distinct circulating exosomes in Parkinson’s disease. Ann Clin Transl Neurol 2015, 2: 353–361.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Pardridge WM. Drug transport across the blood-brain barrier. J Cereb Blood Flow Metab 2012, 32: 1959–1972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Zhuang X, Xiang X, Grizzle W, Sun D, Zhang S, Axtell RC, et al. Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain. Mol Ther 2011, 19: 1769–1779.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJ. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol 2011, 29: 341–345.

    Article  CAS  PubMed  Google Scholar 

  86. Lai CP, Breakefield XO. Role of exosomes/microvesicles in the nervous system and use in emerging therapies. Front Physiol 2012, 3: 228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. El Andaloussi S, Lakhal S, Mager I, Wood MJ. Exosomes for targeted siRNA delivery across biological barriers. Adv Drug Deliv Rev 2013, 65: 391–397.

    Article  PubMed  Google Scholar 

  88. Haney MJ, Zhao Y, Harrison EB, Mahajan V, Ahmed S, He Z, et al. Specific transfection of inflamed brain by macrophages: a new therapeutic strategy for neurodegenerative diseases. PLoS One 2013, 8: e61852.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Cooper JM, Wiklander PB, Nordin JZ, Al-Shawi R, Wood MJ, Vithlani M, et al. Systemic exosomal siRNA delivery reduced alpha-synuclein aggregates in brains of transgenic mice. Mov Disord 2014, 29: 1476–1485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Haney MJ, Klyachko NL, Zhao Y, Gupta R, Plotnikova EG, He Z, et al. Exosomes as drug delivery vehicles for Parkinson’s disease therapy. J Control Release 2015, 207: 18–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Jarmalaviciute A, Pivoriunas A. Exosomes as a potential novel therapeutic tools against neurodegenerative diseases. Pharmacol Res 2016, 113: 816–822.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This review was supported by the grants of International Cooperative Key Project of National Natural Science Foundation of China (81520108010) and the Natural Science Foundation of Shaoxing Municipality, Zhejiang Province, China (2016QN020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baorong Zhang.

Additional information

Xiaoqing Wu and Tingting Zheng have contributed equally to this review.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Zheng, T. & Zhang, B. Exosomes in Parkinson’s Disease. Neurosci. Bull. 33, 331–338 (2017). https://doi.org/10.1007/s12264-016-0092-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-016-0092-z

Keywords

Navigation