Skip to main content

Advertisement

Log in

Dysfunction of autophagy as the pathological mechanism of motor neuron disease based on a patient-specific disease model

  • Review
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Autophagy is the main catabolic pathway in cells for the degradation of impaired proteins and organelles. Accumulating evidence supports the hypothesis that dysfunction of autophagy, leading to an imbalance of proteostasis and the accumulation of toxic proteins in neurons, is a central player in the pathogenesis of neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis (ALS). The clinical pathology of ALS is complex and many genes associated with autophagy and RNA processing are mutated in patients with the familial form. But a causal relationship between autophagic dysfunction and ALS has not been fully established. More importantly, studies on the pathological mechanism of ALS are mainly based on animal models that may not precisely recapitulate the disease itself in human beings. The development of human iPSC techniques allows us to address these issues directly in human cell models that may profoundly influence drug discovery for ALS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Winner B, Marchetto MC, Winkler J, Gage FH. Humaninduced pluripotent stem cells pave the road for a better understanding of motor neuron disease. Hum Mol Genet 2014, 23: R27–34.

    Article  CAS  PubMed  Google Scholar 

  2. Kolb SJ, Kissel JT. Spinal muscular atrophy: a timely review. Arch Neurol 2011, 68: 979–984.

    Article  PubMed  Google Scholar 

  3. Burghes AH, Beattie CE. Spinal muscular atrophy: why do low levels of survival motor neuron protein make motor neurons sick? Nat Rev Neurosci 2009, 10: 597–609.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Yang DJ, Wang XL, Ismail A, Ashman CJ, Valori CF, Wang G, et al. PTEN regulates AMPA receptor-mediated cell viability in iPS-derived motor neurons. Cell Death Dis 2014, 5: e1096.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Wong YC, Holzbaur EL. Optineurin is an autophagy receptor for damaged mitochondria in parkin-mediated mitophagy that is disrupted by an ALS-linked mutation. Proc Natl Acad Sci U S A 2014, 111: E4439–4448.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Majcher V, Goode A, James V, Layfield R. Autophagy receptor defects and ALS-TLD. Mol Cell Neurosci 2015, 66(Pt A): 43–52.

    Article  CAS  PubMed  Google Scholar 

  7. Scotter EL, Chen HJ, Shaw CE. TDP-43 proteinopathy and ALS: insights into disease mechanisms and therapeutic targets. Neurotherapeutics 2015, 12: 352–363.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Cirulli ET, Lasseigne BN, Petrovski S, Sapp PC, Dion PA, Leblond CS, et al. Exome sequencing in amyotrophic lateral sclerosis identifies risk genes and pathways. Science 2015, 347: 1436–1441.

    Article  CAS  PubMed  Google Scholar 

  9. Chen S, Zhang X, Song L, Le W. Autophagy dysregulation in amyotrophic lateral sclerosis. Brain Pathol 2012, 22: 110–116.

    Article  CAS  PubMed  Google Scholar 

  10. Martinez-Vicente M. Autophagy in neurodegenerative diseases: From pathogenic dysfunction to therapeutic modulation. Semin Cell Dev Biol 2015, 40: 115–126.

    Article  CAS  PubMed  Google Scholar 

  11. Rami A. Review: autophagy in neurodegeneration: firefighter and/or incendiarist? Neuropathol Appl Neurobiol 2009, 35: 449–461.

    Article  CAS  PubMed  Google Scholar 

  12. Pan T, Kondo S, Le W, Jankovic J. The role of autophagylysosome pathway in neurodegeneration associated with Parkinson's disease. Brain 2008, 131: 1969–1978.

    Article  PubMed  Google Scholar 

  13. Rubinsztein DC, Marino G, Kroemer G. Autophagy and aging. Cell 2011, 146: 682–695.

    Article  CAS  PubMed  Google Scholar 

  14. Nah J, Yuan J, Jung YK. Autophagy in neurodegenerative diseases: from mechanism to therapeutic approach. Mol Cells 2015, 38: 381–389.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Cheung ZH, Ip NY. Autophagy deregulation in neurodegenerative diseases - recent advances and future perspectives. J Neurochem 2011, 118: 317–325.

    Article  CAS  PubMed  Google Scholar 

  16. Ching JK, Elizabeth SV, Ju JS, Lusk C, Pittman SK, Weihl CC. mTOR dysfunction contributes to vacuolar pathology and weakness in valosin-containing protein associated inclusion body myopathy. Hum Mol Genet 2013, 22: 1167–1179.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Farg MA, Sundaramoorthy V, Sultana JM, Yang S, Atkinson RA, Levina V, et al. C9ORF72, implicated in amytrophic lateral sclerosis and frontotemporal dementia, regulates endosomal trafficking. Hum Mol Genet 2014, 23: 3579–3595.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Garcera A, Bahi N, Periyakaruppiah A, Arumugam S, Soler RM. Survival motor neuron protein reduction deregulates autophagy in spinal cord motoneurons in vitro. Cell Death Dis 2013, 4: e686.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Jaeger PA, Pickford F, Sun CH, Lucin KM, Masliah E, Wyss- Coray T. Regulation of amyloid precursor protein processing by the Beclin 1 complex. PLoS One 2010, 5: e11102.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Malagelada C, Jin ZH, Jackson-Lewis V, Przedborski S, Greene LA. Rapamycin protects against neuron death in in vitro and in vivo models of Parkinson's disease. J Neurosci 2010, 30: 1166–1175.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Barmada SJ, Serio A, Arjun A, Bilican B, Daub A, Ando DM, et al. Autophagy induction enhances TDP43 turnover and survival in neuronal ALS models. Nat Chem Biol 2014, 10: 677–685.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R, et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 2006, 441: 885–889.

    Article  CAS  PubMed  Google Scholar 

  23. Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I, et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 2006, 441: 880–884.

    Article  CAS  PubMed  Google Scholar 

  24. Lipinski MM, Zheng B, Lu T, Yan Z, Py BF, Ng A, et al. Genome-wide analysis reveals mechanisms modulating autophagy in normal brain aging and in Alzheimer's disease. Proc Natl Acad Sci U S A 2010, 107: 14164–14169.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Lonskaya I, Hebron ML, Desforges NM, Franjie A, Moussa CE. Tyrosine kinase inhibition increases functional parkin- Beclin-1 interaction and enhances amyloid clearance and cognitive performance. EMBO Mol Med 2013, 5: 1247–1262.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Michiorri S, Gelmetti V, Giarda E, Lombardi F, Romano F, Marongiu R, et al. The Parkinson-associated protein PINK1 interacts with Beclin1 and promotes autophagy. Cell Death Differ 2010, 17: 962–974.

    Article  CAS  PubMed  Google Scholar 

  27. Arena G, Gelmetti V, Torosantucci L, Vignone D, Lamorte G, De Rosa P, et al. PINK1 protects against cell death induced by mitochondrial depolarization, by phosphorylating Bcl-xL and impairing its pro-apoptotic cleavage. Cell Death Differ 2013, 20: 920–930.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Spilman P, Podlutskaya N, Hart MJ, Debnath J, Gorostiza O, Bredesen D, et al. Inhibition of mTOR by rapamycin abolishes cognitive deficits and reduces amyloid-beta levels in a mouse model of Alzheimer's disease. PLoS One 2010, 5: e9979.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Bandyopadhyay U, Nagy M, Fenton WA, Horwich AL. Absence of lipofuscin in motor neurons of SOD1-linked ALS mice. Proc Natl Acad Sci U S A 2014, 111: 11055–11060.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Chew J, Gendron TF, Prudencio M, Sasaguri H, Zhang YJ, Castanedes- Casey M, et al. Neurodegeneration. C9ORF72 repeat expansions in mice cause TDP-43 pathology, neuronal loss, and behavioral deficits. Science 2015, 348: 1151–1154.

    CAS  PubMed  Google Scholar 

  31. Nassif M, Valenzuela V, Rojas-Rivera D, Vidal R, Matus S, Castillo K, et al. Pathogenic role of BECN1/Beclin 1 in the development of amyotrophic lateral sclerosis. Autophagy 2014, 10: 1256–1271.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Zhang X, Li L, Chen S, Yang D, Wang Y, Zhang X, et al. Rapamycin treatment augments motor neuron degeneration in SOD1(G93A) mouse model of amyotrophic lateral sclerosis. Autophagy 2011, 7: 412–425.

    Article  CAS  PubMed  Google Scholar 

  33. Wang IF, Guo BS, Liu YC, Wu CC, Yang CH, Tsai KJ, et al. Autophagy activators rescue and alleviate pathogenesis of a mouse model with proteinopathies of the TAR DNA-binding protein 43. Proc Natl Acad Sci U S A 2012, 109: 15024–15029.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Sasaki S, Yamashita T, Shin K. Au tophagy in spinal motor neurons of conditional ADAR2-knockout mice: An implication for a role of calcium in increased autophagy flux in ALS. Neurosci Lett 2015, 598: 79–84.

    Article  CAS  PubMed  Google Scholar 

  35. Kissel JT, Scott CB, Reyna SP, Crawford TO, Simard LR, Krosschell KJ, et al. SMA CARNI-VAL TRIAL PART II: a prospective, single- armed trial of L-carnitine and valproic acid in ambulatory children with spinal muscular atrophy. PLoS One 2011, 6: e21296.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Dimos JT, Rodolfa KT, Niakan KK, Weisenthal LM, Mitsumoto H, Chung W, et al. Induced pluripotent stem cells generated from patients with als can be differentiated into motor neurons. Science 2008, 321: 1218.

    Article  CAS  PubMed  Google Scholar 

  37. Egawa N. Drug Screening for ALS Us ing Patient-Specific Induced Pluripotent Stem Cells. Sci Transl Med 2012, 4: 145ra104.

    PubMed  Google Scholar 

  38. Sareen D, O'Rourke JG, Meera P, Muhammad AK, Grant S, Simpkinson M, et al. Targeting RNA foci in iPSC-derived motor neurons from ALS patients with a C9ORF72 repeat expansion. Sci Transl Med 2013, 5: 208ra149.

    PubMed Central  PubMed  Google Scholar 

  39. Tao Z, Wang H, Xia Q, Li K, Li K, Jiang X, et al. Nucleolar stress and impaired stress granule formation contribute to C9orf72 RAN translation-induced cytotoxicity. Hum Mol Genet 2015, 24: 2426–2441.

    Article  PubMed  Google Scholar 

  40. Ebert AD YJ, Yu J, Rose FF Jr, Mattis VB, Lorson CL, Thomson JA, et al. Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature 2009, 457: 277–281.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Chang T, Zheng W, TSARK W, Bates S, Huang H, Lin RJ, et al. Brief report: phenotypic rescue of induced pluripotent stem cell-derived motoneurons of a spinal muscular atrophy patient. Stem Cells 2011, 29: 2090–2093.

    Article  CAS  PubMed  Google Scholar 

  42. Yagi T, Ito D, Okada Y, Akamatsu W, Nihei Y, Yoshizaki T, et al. Modeling familial Alzheimer's disease with induced pluripotent stem cells. Hum Mol Genet 2011, 20: 4530–4539.

    Article  CAS  PubMed  Google Scholar 

  43. Israel MA, Yuan SH, Bardy C, Reyna SM, Mu Y, Herrera C, et al. Probing sporadic and familial Alzheimer's disease using induced pluripotent stem cells. Nature 2012, 482: 216–220.

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Nguyen HN, Byers B, Cord B, Shcheglovitov A, Byrne J, Gujar P, et al. LRRK2 mutant iPSC-derived DA neurons demonstrate increased susceptibility to oxidative stress. Cell Stem Cell 2011, 8: 267–280.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Rakovic A, Shurkewitsch K, Seibler P, Grunewald A, Zanon A, Hagenah J, et al. Phosphatase and tensin homolog (PTEN)- induced putative kinase 1 (PINK1)-dependent ubiquitination of endogenous Parkin attenuates mitophagy: study in human primary fibroblasts and induced pluripotent stem cell-derived neurons. J Biol Chem 2013, 288: 2223–2237.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Byers B, Cord B, Nguyen HN, Schule B, Fenno L, Lee PC, et al. SNCA triplication Parkinson's patient's iPSC-derived DA neurons accumulate alpha-synuclein and are susceptible to oxidative stress. PLoS One 2011, 6: e26159.

    Article  PubMed Central  PubMed  Google Scholar 

  47. Sanchez-Danes A, Richaud-Patin Y, Carballo-Carbajal I, Jimenez-Delgado S, Caig C, Mora S, et al. Disease-specific phenotypes in dopamine neurons from human iPS-based models of genetic and sporadic Parkinson's disease. EMBO Mol Med 2012, 4: 380–395.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongwen Zhu or Jun Xu.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, DJ., Zhu, L., Ren, J. et al. Dysfunction of autophagy as the pathological mechanism of motor neuron disease based on a patient-specific disease model. Neurosci. Bull. 31, 445–451 (2015). https://doi.org/10.1007/s12264-015-1541-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-015-1541-9

Keywords

Navigation