Skip to main content

Advertisement

Log in

Using optogenetics to translate the “inflammatory dialogue” between heart and brain in the context of stress

  • Review
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Inflammatory processes are an integral part of the stress response and are likely to result from a programmed adaptation that is vital to the organism’s survival and well-being. The whole inflammatory response is mediated by largely overlapping circuits in the limbic forebrain, hypothalamus and brainstem, but is also under the control of the neuroendocrine and autonomic nervous systems. Genetically predisposed individuals who fail to tune the respective contributions of the two systems in accordance with stressor modality and intensity after adverse experiences can be at risk for stress-related psychiatric disorders and cardiovascular diseases. Altered glucocorticoid (GC) homeostasis due to GC resistance leads to the failure of neural and negative feedback regulation of the hypothalamic-pituitary-adrenal axis during chronic inflammation, and this might be the mechanism underlying the ensuing brain and heart diseases and the high prevalence of co-morbidity between the two systems. By the combined use of light and genetically-encoded light-sensitive proteins, optogenetics allows cell-type-specific, fast (millisecond-scale) control of precisely defined events in biological systems. This method is an important breakthrough to explore the causality between neural activity patterns and behavioral profiles relevant to anxiety, depression, autism and schizophrenia. Optogenetics also helps to understand the “inflammatory dialogue”, the inflammatory processes in psychiatric disorders and cardiovascular diseases, shared by heart and brain in the context of stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kemeny ME, Schedlowski M. Understanding the interaction between psychosocial stress and immune-related diseases: A stepwise progression. Brain Behav Immun 2007, 21: 1009–1018.

    Article  PubMed  CAS  Google Scholar 

  2. Ulrich-Lai YM, Herman JP. Neural regulation of endocrine and autonomic stress responses. Nat Rev Neurosci 2009, 10: 397–409.

    Article  PubMed  CAS  Google Scholar 

  3. Joels M, Baram TZ. The neuro-symphony of stress. Nat Rev Neurosci 2009, 10: 459–466.

    PubMed  CAS  Google Scholar 

  4. Paul H B. Stress and the inflammatory response: A review of neurogenic inflammation. Brain Behav Immun 2002, 16: 622–653.

    Article  Google Scholar 

  5. Khansari DN, Murgo AJ, Faith RE. Effects of stress on the immune system. Immunol Today 1990, 11: 170–175.

    Article  PubMed  CAS  Google Scholar 

  6. Steinman L. Elaborate interactions between the immune and nervous systems. Nat Immunol 2004, 5: 575–581.

    Article  PubMed  CAS  Google Scholar 

  7. Garcia-Bueno B, Caso JR, Leza JC. Stress as a neuroinflammatory condition in brain: damaging and protective mechanisms. Neurosci Biobehav Rev 2008, 32: 1136–1151.

    Article  PubMed  CAS  Google Scholar 

  8. Johnson JD, Campisi J, Sharkey CM, Kennedy SL, Nickerson M, Greenwood BN, et al. Catecholamines mediate stress-induced increa ses in peripheral and central inflammatory cytokines. Neuroscience 2005, 135: 1295–1307.

    Article  PubMed  CAS  Google Scholar 

  9. Lucas S-M, Rothwell NJ, Gibson RM. The role of inflammation in CNS injury and disease. Br J Pharmacol 2006, 147: S232–S240.

    Article  PubMed  CAS  Google Scholar 

  10. Marques AH, Silverman MN, Sternberg EM. Glucocorticoid dysregulations and their clinical correlates. From receptors to therapeutics. Ann N Y Acad Sci 2009, 1179: 1–18.

    Article  PubMed  CAS  Google Scholar 

  11. Raison CL, Miller AH. When not enough is too much: the role of insufficient glucocorticoid signaling in the pathophysiology of stress-related disorders. Am J Psychiatry 2003, 160: 1554–1565.

    Article  PubMed  Google Scholar 

  12. Bilbo SD, Schwarz JM. Early-life programming of later-life brain and behavior: a critical role for the immune system. Front Behav Neurosci 2009, 3.

  13. Miller GE, Chen E, Fok AK, Walker H, Lim A, Nicholls EF, et al. Low early-life social class leaves a biological residue manifested by decreased glucocorticoid and increased proinflammatory signaling. Proc Natl Acad Sci U S A 2009, 106: 14716–14721.

    Article  PubMed  CAS  Google Scholar 

  14. Cohen S, Janicki-Deverts D, Miller GE. Psychological stress and disease. JAMA 2007, 298: 1685–1687.

    Article  PubMed  CAS  Google Scholar 

  15. de Kloet ER, Joels M, Holsboer F. Stress and the brain: from adaptation to disease. Nat Rev Neurosci 2005, 6: 463–475.

    Article  PubMed  CAS  Google Scholar 

  16. Pace TW, Mletzko TC, Alagbe O, Musselman DL, Nemeroff CB, Miller AH, et al. Increased stress-induced inflammatory responses in male patients with major depression and increased early life stress. Am J Psychiatry 2006, 163: 1630–1633.

    Article  PubMed  Google Scholar 

  17. Irwin MR, Miller AH. Depressive disorders and immunity: 20 years of progress and discovery. Brain Behav Immun 2007, 21: 374–383.

    Article  PubMed  CAS  Google Scholar 

  18. Pace TW, Hu F, Miller AH. Cytokine-effects on glucocorticoid receptor function: relevance to glucocorticoid resistance and the pathophysiology and treatment of major depression. Brain Behav Immun 2007, 21: 9–19.

    Article  PubMed  CAS  Google Scholar 

  19. Rohleder N, Wolf JM, Wolf OT. Glucocorticoid sensitivity of cognitive and inflammatory processes in depression and posttraumatic stress disorder. Neurosci Biobehav Rev 2010, 35: 104–114.

    Article  PubMed  CAS  Google Scholar 

  20. Herman JP, Figueiredo H, Mueller NK, Ulrich-Lai Y, Ostrander MM, Choi DC, et al. Central mechanisms of stress integration: hierarchical circuitry controlling hypothalamo-pituitary-adrenocortical responsiveness. Front Neuroendocrinol 2003, 24: 151–180.

    Article  PubMed  CAS  Google Scholar 

  21. Segerstrom SC, Miller GE. Psychological stress and the human immune system: a meta-analytic study of 30 years of inquiry. Psychol Bull 2004, 130: 601–630.

    Article  PubMed  Google Scholar 

  22. Bierhaus A, Wolf J, Andrassy M, Rohleder N, Humpert PM, Petrov D, et al. A mechanism converting psychosocial stress into mononuclear cell activation. Proc Natl Acad Sci U S A 2003, 100: 1920–1925.

    Article  PubMed  CAS  Google Scholar 

  23. Pavlov VA, Tracey KJ. The cholinergic anti-inflammatory pathway. Brain Behav Immun 2005, 19: 493–499.

    Article  PubMed  CAS  Google Scholar 

  24. Glaser R, Kiecolt-Glaser JK. Stress-induced immune dysfunction: implications for health. Nat Rev Immunol 2005, 5: 243–251.

    Article  PubMed  CAS  Google Scholar 

  25. Murray DR, Prabhu SD, Chandrasekar B. Chronic beta-adrenergic stimulation induces myocardial proinflammatory cytokine expression. Circulation 2000, 101: 2338–2341.

    Article  PubMed  CAS  Google Scholar 

  26. Sorrells SF, Caso JR, Munhoz CD, Sapolsky RM. The stressed CNS: When glucocorticoids aggravate inflammation. Neuron 2009, 64: 33–39.

    Article  PubMed  CAS  Google Scholar 

  27. Lehnert H, Schulz C, Dieterich K. Physiological and neurochemical aspects of corticotropin-releasing factor actions in the brain: the role of the locus coeruleus. Neurochem Res 1998, 23: 1039–1052.

    Article  PubMed  CAS  Google Scholar 

  28. Reul JM, Labeur MS, Wiegers GJ, Linthorst AC. Altered neuroim-munoendocrine communication during a condition of chronically increased brain corticotropin-releasing hormone drive. Ann N Y Acad Sci 1998, 840: 444–455.

    Article  PubMed  CAS  Google Scholar 

  29. Valentino RJ, Foote SL, Page ME. The locus coeruleus as a site for integrating corticotropin-releasing factor and noradrenergic mediation of stress responses. Ann N Y Acad Sci 1993, 697: 173–188.

    Article  PubMed  CAS  Google Scholar 

  30. Tafet GE, Bernardini R. Psychoneuroendocrinological links between chronic stress and depression. Prog Neuropsychopharmacol Biol Psychiatry 2003, 27: 893–903.

    Article  PubMed  Google Scholar 

  31. McEwen BS. Physiology and neurobiology of stress and adaptation: Central role of the brain. Physiol Rev 2007, 87: 873–904.

    Article  PubMed  Google Scholar 

  32. McEwen BS, Gianaros PJ. Central role of the brain in stress and adaptation: Links to socioeconomic status, health, and disease. Ann N Y Acad Sci 2010, 1186: 190–222.

    Article  PubMed  Google Scholar 

  33. Galea I, Bechmann I, Perry VH. What is immune privilege (not)? Trends Immunol 2007, 28: 12–18.

    Article  PubMed  CAS  Google Scholar 

  34. Dantzer R, O’Connor JC, Freund GG, Johnson RW, Kelley KW. From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci 2008, 9: 46–56.

    Article  PubMed  CAS  Google Scholar 

  35. Capuron L, Miller AH. Immune system to brain signaling: Neuropsychopharmacological implications. Pharmacol Ther 2011, 130: 226–238.

    Article  PubMed  CAS  Google Scholar 

  36. McEwen BS. Central effects of stress hormones in health and disease: Understanding the protective and damaging effects of stress and stress mediators. Eur J Pharmacol 2008, 583: 174–185.

    Article  PubMed  CAS  Google Scholar 

  37. Quan N, Whiteside M, Herkenham M. Time course and localization patterns of interleukin-1beta messenger RNA expression in brain and pituitary after peripheral administration of lipopolysaccharide. Neuroscience 1998, 83: 281–293.

    Article  PubMed  CAS  Google Scholar 

  38. Banks WA. The blood-brain barrier in psychoneuroimmunology. Immunol Allergy Clin North Am 2009, 29: 223–228.

    Article  PubMed  Google Scholar 

  39. Miller AH, Maletic V, Raison CL. Inflammation and its discontents: The role of cytokines in the pathophysiology of major depression. Biol Psychiatry 2009, 65: 732–741.

    Article  PubMed  CAS  Google Scholar 

  40. Dunn AJ. Cytokine activation of the HPA axis. Ann N Y Acad Sci 2000, 917: 608–617.

    Article  PubMed  CAS  Google Scholar 

  41. Calcagni E, Elenkov I. Stress system activity, innate and T helper cytokines, and susceptibility to immune-related diseases. Ann N Y Acad Sci 2006, 1069: 62–76.

    Article  PubMed  CAS  Google Scholar 

  42. Adrian J D. The HPA axis and the immune system: A perspective. NeuroImmune Biol 2007, 7: 3–15.

    Article  Google Scholar 

  43. Pariante CM. Depression, stress and the adrenal axis. J Neuroendocrinol 2003, 15: 811–812.

    Article  PubMed  Google Scholar 

  44. Pariante CM, Miller AH. Glucocorticoid receptors in major depression: relevance to pathophysiology and treatment. Biol Psychiatry 2001, 49: 391–404.

    Article  PubMed  CAS  Google Scholar 

  45. Keller J, Flores B, Gomez RG, Solvason HB, Kenna H, Williams GH, et al. Cortisol circadian rhythm alterations in psychotic major depression. Biol Psychiatry 2006, 60: 275–281.

    Article  PubMed  CAS  Google Scholar 

  46. Nijm J, Jonasson L. Inflammation and cortisol response in coronary artery disease. Ann Med 2009, 41: 224–233.

    Article  PubMed  CAS  Google Scholar 

  47. Pace TW, Miller AH. Cytokines and glucocorticoid receptor signaling. Relevance to major depression. Ann N Y Acad Sci 2009, 1179: 86–105.

    Article  PubMed  CAS  Google Scholar 

  48. Agelaki S, Tsatsanis C, Gravanis A, Margioris AN. Corticotropin-releasing hormone augments proinflammatory cytokine production from macrophages in vitro and in lipopolysaccharide-induced endotoxin shock in mice. Infect Immun 2002, 70: 6068–6074.

    Article  PubMed  CAS  Google Scholar 

  49. Pascoli V, Turiault M, Luscher C. Reversal of cocaine-evoked synaptic potentiation resets drug-induced adaptive behaviour. Nature 2012, 481: 71–75.

    Article  CAS  Google Scholar 

  50. Tsai HC, Zhang F, Adamantidis A, Stuber GD, Bonci A, de Lecea L, et al. Phasic firing in dopaminergic neurons is sufficient for behavioral conditioning. Science 2009, 324: 1080–1084.

    Article  PubMed  CAS  Google Scholar 

  51. Ren J, Qin C, Hu F, Tan J, Qiu L, Zhao S, et al. Habenula cholinergic neurons corelease glutamate and acetylcholine and activate postsynaptic neurons via distinct transmission modes. Neuron 2011, 69: 445–452.

    Article  PubMed  CAS  Google Scholar 

  52. DePuy SD, Kanbar R, Coates MB, Stornetta RL, Guyenet PG. Control of breathing by raphe obscurus serotonergic neurons in mice. J Neurosci 2011, 31: 1981–1990.

    Article  PubMed  CAS  Google Scholar 

  53. de Jonge P, Rosmalen JGM, Kema IP, Doornbos B, van Melle JP, Pouwer F, et al. Psychophysiological biomarkers explaining the association between depression and prognosis in coronary artery patients: A critical review of the literature. Neurosci Biobehav Rev 2010, 35: 84–90.

    Article  PubMed  Google Scholar 

  54. Grippo AJ, Johnson AK. Stress, depression and cardiovascular dysregulation: a review of neurobiological mechanisms and the integration of research from preclinical disease models. Stress 2009, 12: 1–21.

    Article  PubMed  CAS  Google Scholar 

  55. Poole L, Dickens C, Steptoe A. The puzzle of depression and acute coronary syndrome: reviewing the role of acute inflammation. J Psychosom Res 2011, 71: 61–68.

    Article  PubMed  Google Scholar 

  56. Lichtman JH, Bigger JT, Blumenthal JA, Frasure-Smith N, Kaufmann PG, Lespérance F, et al. Depression and coronary heart disease. Circulation 2008, 118: 1768–1775.

    Article  PubMed  Google Scholar 

  57. Felder RB, Francis J, Zhang ZH, Wei SG, Weiss RM, Johnson AK. Heart failure and the brain: new perspectives. Am J Physiol Regul Integr Comp Physiol 2003, 284: R259–276.

    PubMed  CAS  Google Scholar 

  58. Penninx BW, Beekman AT, Honig A, Deeg DJ, Schoevers RA, van Eijk JT, et al. Depression and cardiac mortality: results from a community-based longitudinal study. Arch Gen Psychiatry 2001, 58: 221–227.

    Article  PubMed  CAS  Google Scholar 

  59. Black PH, Garbutt LD. Stress, inflammation and cardiovascular disease. J Psychosom Res 2002, 52: 1–23.

    Article  PubMed  Google Scholar 

  60. Mann DL. Inflammatory mediators and the failing heart. Circ Res 2002, 91: 988–998.

    Article  PubMed  CAS  Google Scholar 

  61. Savoia C, Schiffrin EL. Inflammation in hypertension. Curr Opin Nephrol Hypertens 2006, 15: 152–158.

    PubMed  CAS  Google Scholar 

  62. Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH. Mechanisms Underlying Inflammation in Neurodegeneration. Cell 2010, 140: 918–934.

    Article  PubMed  CAS  Google Scholar 

  63. Kettenmann H, Hanisch UK, Noda M, Verkhratsky A. Physiology of microglia. Physiol Rev 2011, 91: 461–553.

    Article  PubMed  CAS  Google Scholar 

  64. Welsh P, Lowe GD, Chalmers J, Campbell DJ, Rumley A, Neal BC, et al. Associations of proinflammatory cytokines with the risk of recurrent stroke. Stroke 2008, 39: 2226–2230.

    Article  PubMed  CAS  Google Scholar 

  65. Kannan H, Tanaka Y, Kunitake T, Ueta Y, Hayashida Y, Yamashita H. Activation of sympathetic outflow by recombinant human interleu-kin-1 beta in conscious rats. Am J Physiol 1996, 270: R479–R485.

    PubMed  CAS  Google Scholar 

  66. Kimura T, Yamamoto T, Ota K, Shoji M, Inoue M, Sato K, et al. Central effects of interleukin-1 on blood pressure, thermogenesis, and the release of vasopressin, ACTH, and atrial natriuretic peptide. Ann N Y Acad Sci 1993, 689: 330–345.

    Article  PubMed  CAS  Google Scholar 

  67. Francis J, Zhang ZH, Weiss RM, Felder RB. Neural regulation of the proinflammatory cytokine response to acute myocardial infarction. Am J Physiol Heart Circ Physiol 2004, 287: H791–H797.

    Article  PubMed  CAS  Google Scholar 

  68. Kang YM, Ma Y, Elks C, Zheng JP, Yang ZM, Francis J. Cross-talk between cytokines and renin-angiotensin in hypothalamic para-ventricular nucleus in heart failure: role of nuclear factor-κB. Cardiovasc Res 2008, 79: 671–678.

    Article  PubMed  CAS  Google Scholar 

  69. Kang YM, Zhang ZH, Xue B, Weiss RM, Felder RB. Inhibition of brain proinflammatory cytokine synthesis reduces hypothalamic excitation in rats with ischemia-induced heart failure. Am J Physiol Heart Circ Physiol 2008, 295: H227–H236.

    Article  PubMed  CAS  Google Scholar 

  70. Kang YM, He RL, Yang LM, Qin DN, Guggilam A, Elks C, et al. Brain tumour necrosis factor-α modulates neurotransmitters in hypothalamic paraventricular nucleus in heart failure. Cardiovasc Res 2009, 83: 737–746.

    Article  PubMed  CAS  Google Scholar 

  71. Yu Y, Zhang ZH, Wei SG, Chu Y, Weiss RM, Heistad DD, et al. Central gene transfer of interleukin-10 reduces hypothalamic inflammation and evidence of heart failure in rats after myocardial infarction. Circ Res 2007, 101: 304–312.

    Article  PubMed  CAS  Google Scholar 

  72. Ufnal M, Sikora M, Szczepanska-Sadowska E. Interleukin-1 receptor antagonist reduces the magnitude of the pressor response to acute stress. Neurosci Lett 2008, 448: 47–51.

    Article  PubMed  CAS  Google Scholar 

  73. Ufnal M, Dudek M, Żera T, Szczepańska-Sadowska E. Centrally administered interleukin-1 beta sensitizes to the central pressor action of angiotensin II. Brain Res 2006, 1100: 64–72.

    Article  PubMed  CAS  Google Scholar 

  74. Sriramula S, Haque M, Majid DSA, Francis J. Involvement of tumor necrosis factor-α in angiotensin II-mediated effects on salt appetite, hypertension, and cardiac hypertrophy. Hypertension 2008, 51: 1345–1351.

    Article  PubMed  CAS  Google Scholar 

  75. Cardinale JP, Sriramula S, Mariappan N, Agarwal D, Francis J. Angiotensin II-induced hypertension is modulated by nuclear factor-κB in the paraventricular nucleus. Hypertension 2012, 59: 113–121.

    Article  PubMed  CAS  Google Scholar 

  76. Dean B, Tawadros N, Scarr E, Gibbons AS. Regionally-specific changes in levels of tumour necrosis factor in the dorsolateral prefrontal cortex obtained postmortem from subjects with major depressive disorder. J Affect Disord 2010, 120: 245–248.

    Article  PubMed  CAS  Google Scholar 

  77. Goshen I, Kreisel T, Ben-Menachem-Zidon O, Licht T, Weidenfeld J, Ben-Hur T, et al. Brain interleukin-1 mediates chronic stress-induced depression in mice via adrenocortical activation and hippocampal neurogenesis suppression. Mol Psychiatry 2007, 13: 717–728.

    Article  PubMed  CAS  Google Scholar 

  78. Robert D. Cytokine, sickness behavior, and depression. Immunol Allergy Clin North Am 2009, 29: 247–264.

    Article  Google Scholar 

  79. Bluthé RM, Pawlowski M, Suarez S, Parnet P, Pittman Q, Kelley KW, et al. Synergy between tumor necrosis factor α and interleukin-1 in the induction of sickness behavior in mice. Psychoneuroendocrinology 1994, 19: 197–207.

    Article  PubMed  Google Scholar 

  80. Mastronardi C, Whelan F, Yildiz OA, Hannestad J, Elashoff D, McCann SM, et al. Caspase 1 deficiency reduces inflammation-induced brain transcription. Proc Natl Acad Sci U S A 2007, 104: 7205–7210.

    Article  PubMed  CAS  Google Scholar 

  81. Grippo AJ, Francis J, Beltz TG, Felder RB, Johnson AK. Neuroen-docrine and cytokine profile of chronic mild stress-induced anhedonia. Physiol Behav 2005, 84: 697–706.

    Article  PubMed  CAS  Google Scholar 

  82. Grippo AJ, Francis J, Weiss RM, Felder RB, Johnson AK. Cytokine mediation of experimental heart failure-induced anhedonia. Am J Physiol Regul Integr Comp Physiol 2003, 284: R666–R673.

    PubMed  CAS  Google Scholar 

  83. Guggilam A, Patel KP, Haque M, Ebenezer PJ, Kapusta DR, Francis J. Cytokine blockade attenuates sympathoexcitation in heart failure: cross-talk between nNOS, AT-1R and cytokines in the hypothalamic paraventricular nucleus. Eur J Heart Fail 2008, 10: 625–634.

    Article  PubMed  CAS  Google Scholar 

  84. O’Connor KA, Johnson JD, Hansen MK, Wieseler Frank JL, Maksimova E, Watkins LR, et al. Peripheral and central proinflammatory cytokine response to a severe acute stressor. Brain Res 2003, 991: 123–132.

    Article  PubMed  CAS  Google Scholar 

  85. Shi P, Raizada MK, Sumners C. Brain cytokines as neuromodulators in cardiovascular control. Clin Exp Pharmacol Physiol 2010, 37: e52–e57.

    Article  PubMed  CAS  Google Scholar 

  86. Girod JP, Brotman DJ. Does altered glucocorticoid homeostasis increase cardiovascular risk? Cardiovasc Res 2004, 64: 217–226.

    Article  PubMed  CAS  Google Scholar 

  87. Sapolsky RM, Romero LM, Munck AU. How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr Rev 2000, 21: 55–89.

    Article  PubMed  CAS  Google Scholar 

  88. Fujiwara T, Cherrington AD, Neal DN, McGuinness OP. Role of cortisol in the metabolic response to stress hormone infusion in the conscious dog. Metabolism 1996, 45: 571–578.

    Article  PubMed  CAS  Google Scholar 

  89. Goldstein RE, Cherrington AD, Reed GW, Lacy DB, Wasserman DH, Abumrad NN. Effects of chronic hypercortisolemia on carbo-hydrate metabolism during insulin deficiency. Am J Physiol 1994, 266: E618–E627.

    PubMed  CAS  Google Scholar 

  90. Gorzelniak K, Engeli S, Janke J, Luft FC, Sharma AM. Hormonal regulation of the human adipose-tissue renin-angiotensin system: relationship to obesity and hypertension. J Hypertens 2002, 20: 965–973.

    Article  PubMed  CAS  Google Scholar 

  91. Munck A, Náray-Fejes-Tóth A. Glucocorticoids and stress: permissive and suppressive actions. Ann N Y Acad Sci 1994, 746: 115–130.

    Article  PubMed  CAS  Google Scholar 

  92. Brown ES, Varghese FP, McEwen BS. Association of depression with medical illness: does cortisol play a role? Biol Psychiatry 2004, 55: 1–9.

    Article  PubMed  CAS  Google Scholar 

  93. Rosmond R, Wallerius S, Wanger P, Martin L, Holm G, Björntorp P. A 5-year follow-up study of disease incidence in men with an abnormal hormone pattern. J Intern Med 2003, 254: 386–390.

    Article  PubMed  CAS  Google Scholar 

  94. Leonard BE. The concept of depression as a dysfunction of the immune system. Curr Immunol Rev 2010, 6: 205–212.

    Article  PubMed  CAS  Google Scholar 

  95. Jokinen J, Nordström P. HPA axis hyperactivity and cardiovascular mortality in mood disorder inpatients. J Affect Disord 2009, 116: 88–92.

    Article  PubMed  CAS  Google Scholar 

  96. Vogelzangs N, Suthers K, Ferrucci L, Simonsick EM, Ble A, Schrager M, et al. Hypercortisolemic depression is associated with the metabolic syndrome in late-life. Psychoneuroendocrinology 2007, 32: 151–159.

    Article  PubMed  CAS  Google Scholar 

  97. Koeijvoets KCMC, van der Net JB, van Rossum EFC, Steyerberg EW, Defesche JC, Kastelein JJP, et al. Two Common haplotypes of the glucocorticoid receptor gene are associated with increased susceptibility to cardiovascular disease in men with familial hyper-cholesterolemia. J Clin Endocrinol Metab 2008, 93: 4902–4908.

    Article  PubMed  CAS  Google Scholar 

  98. Vedder H, Schreiber W, Schuld A, Kainz M, Lauer CJ, Krieg JC, et al. Immune-endocrine host response to endotoxin in major depression. J Psychiatr Res 2007, 41: 280–289.

    Article  PubMed  Google Scholar 

  99. Deisseroth K. Optogenetics. Nat Methods 2011, 8: 26–29.

    Article  PubMed  CAS  Google Scholar 

  100. Yizhar O, Fenno LE, Davidson TJ, Mogri M, Deisseroth K. Optogenetics in neural systems. Neuron 2011, 71: 9–34.

    Article  PubMed  CAS  Google Scholar 

  101. Covington HE, Lobo MK, Maze I, Vialou V, Hyman JM, Zaman S, et al. Antidepressant effect of optogenetic stimulation of the medial prefrontal cortex. J Neurosci 2010, 30: 16082–16090.

    Article  PubMed  CAS  Google Scholar 

  102. Tye KM, Prakash R, Kim SY, Fenno LE, Grosenick L, Zarabi H, et al. Amygdala circuitry mediating reversible and bidirectional control of anxiety. Nature 2011, 471: 358–362.

    Article  PubMed  CAS  Google Scholar 

  103. Tye KM, Deisseroth K. Optogenetic investigation of neural circuits underlying brain disease in animal models. Nat Rev Neurosci 2012, 13: 251–266.

    Article  PubMed  CAS  Google Scholar 

  104. Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 2005, 8: 1263–1268.

    Article  PubMed  CAS  Google Scholar 

  105. Zhang F, Wang LP, Boyden ES, Deisseroth K. Channelrhodopsin-2 and optical control of excitable cells. Nat Methods 2006, 3: 785–792.

    Article  PubMed  CAS  Google Scholar 

  106. Zhang F, Wang LP, Brauner M, Liewald JF, Kay K, Watzke N, et al. Multimodal fast optical interrogation of neural circuitry. Nature 2007, 446: 633–639.

    Article  PubMed  CAS  Google Scholar 

  107. Aravanis AM, Wang LP, Zhang F, Meltzer LA, Mogri MZ, Schneider MB, et al. An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology. J Neural Eng 2007, 4: S143–156.

    Article  PubMed  Google Scholar 

  108. Sidor MM. Psychiatry’s age of enlightenment: optogenetics and the discovery of novel targets for the treatment of psychiatric disorders. J Psychiatry Neurosci 2012, 37: 4–6.

    PubMed  Google Scholar 

  109. Goshen I, Brodsky M, Prakash R, Wallace J, Gradinaru V, Ramakrishnan C, et al. Dynamics of retrieval strategies for remote memories. Cell 2011, 147: 678–689.

    Article  PubMed  CAS  Google Scholar 

  110. Jankord R, Herman JP. Limbic regulation of hypothalamo-pituitary-adrenocortical function during acute and chronic stress. Ann N Y Acad Sci 2008, 1148: 64–73.

    Article  PubMed  Google Scholar 

  111. Wilbrecht L, Shohamy D. Neural circuits can bridge systems and cognitive neuroscience. Front Hum Neurosci 2010, 3: 81.

    Article  PubMed  Google Scholar 

  112. Gadek-Michalska A, Bugajski J. Interleukin-1 (IL-1) in stress-induced activation of limbic-hypothalamic-pituitary adrenal axis. Pharmacol Rep 2010, 62: 969–982.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Caiyi Lu or Liping Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, J., Zhang, J., Lu, C. et al. Using optogenetics to translate the “inflammatory dialogue” between heart and brain in the context of stress. Neurosci. Bull. 28, 435–448 (2012). https://doi.org/10.1007/s12264-012-1246-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-012-1246-2

Keywords

Navigation