Skip to main content

Optogenetic Control of Heart Rhythm: Lightly Guiding the Cardiac Pace

  • Protocol
  • First Online:
cAMP Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2483))

  • 924 Accesses

Abstract

It is well appreciated that, differently from skeletal muscles, the heart contracts independently from neurogenic inputs. However, the speed and force of heartbeats are finely modulated during stresses, emotions, and daily activities, by the autonomic neurons (both parasympathetic and sympathetic) which highly innervate the myocardium. Despite this aspect of cardiac physiology has been known for long, research has only recently shed light on the biophysical mechanisms underlying the meticulous adaptation of heart activity to the needs of the organism. A conceptual advancement in this regard has come from the use of optogenetics, a revolutionary methodology which allows to control the activity of a given excitable cell type, with high specificity, temporal and spatial resolution, within intact tissues and organisms. The method, widely affirmed in the field of neuroscience, has more recently been exploited also in research on heart physiology and pathology, including the study of the mechanisms regulating heart rhythm. The last point is the object of this book chapter which, starting from the description of the physiology of heart rhythm automaticity and the neurogenic modulation of heart rate, makes an excursus on the theoretical basis of such biotechnology (with its advantages and limitations), and presents a series of examples in cardiac and neuro-cardiac optogenetics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zaglia T, Mongillo M (2017) Cardiac sympathetic innervation, from a different point of (re)view. J Physiol 595:3919–3930. https://doi.org/10.1113/JP273120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Pianca N, Zaglia T, Mongillo M (2017) Will cardiac optogenetics find the way through the obscure angles of heart physiology? Biochem Biophys Res Commun 482:515–523. https://doi.org/10.1016/j.bbrc.2016.11.104

    Article  CAS  PubMed  Google Scholar 

  3. Boyden ES, Zhang F, Bamberg E et al (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8:1263–1268. https://doi.org/10.1038/nn1525

    Article  CAS  PubMed  Google Scholar 

  4. Bernstein JG, Boyden ES (2011) Optogenetic tools for analyzing the neural circuits of behavior. Trends Cogn Sci 15:592–600. https://doi.org/10.1016/j.tics.2011.10.003

    Article  PubMed  PubMed Central  Google Scholar 

  5. Deisseroth K, Feng G, Majewska AK et al (2006) Next-generation optical technologies for illuminating genetically targeted brain circuits. J Neurosci 26:10380–10386. https://doi.org/10.1523/JNEUROSCI.3863-06.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zaglia T, Di Bona A, Mongillo M (2019) A light wand to untangle the myocardial cell network. Methods Protoc 2:34. https://doi.org/10.3390/mps2020034

    Article  CAS  PubMed Central  Google Scholar 

  7. Bruegmann T, Malan D, Hesse M et al (2010) Optogenetic control of heart muscle in vitro and in vivo. Nat Methods 7:897–900. https://doi.org/10.1038/nmeth.1512

    Article  CAS  PubMed  Google Scholar 

  8. Zaglia T, Pianca N, Borile G et al (2015) Optogenetic determination of the myocardial requirements for extrasystoles by cell type-specific targeting of ChannelRhodopsin-2. Proc Natl Acad Sci U S A 112:E4495–E4504. https://doi.org/10.1073/pnas.1509380112. [pii] 1509380112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Prando V, Da Broi F, Franzoso M et al (2018) Dynamics of neuroeffector coupling at cardiac sympathetic synapses. J Physiol 596:2055–2075. https://doi.org/10.1113/JP275693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wengrowski AM, Wang X, Tapa S et al (2015) Optogenetic release of norepinephrine from cardiac sympathetic neurons alters mechanical and electrical function. Cardiovasc Res 105:143–150. https://doi.org/10.1093/cvr/cvu258

    Article  CAS  PubMed  Google Scholar 

  11. Moreno A, Endicott K, Skancke M et al (2019) Sudden heart rate reduction upon optogenetic release of acetylcholine from cardiac parasympathetic neurons in perfused hearts. Front Physiol 10:16. https://doi.org/10.3389/fphys.2019.00016

    Article  PubMed  PubMed Central  Google Scholar 

  12. Antzelevitch C, Sicouri S, Litovsky SH et al (1991) Heterogeneity within the ventricular wall. Electrophysiology and pharmacology of epicardial, endocardial, and M cells. Circ Res 69:1427–1449. https://doi.org/10.1161/01.res.69.6.1427

    Article  CAS  PubMed  Google Scholar 

  13. Antzelevitch C (2007) Heterogeneity and cardiac arrhythmias: an overview. Hear Rhythm 4:964–972. https://doi.org/10.1016/j.hrthm.2007.03.036

    Article  Google Scholar 

  14. Katz AM (2011) Physiology of the heart, 5th edn. Wolters Kluwer Health, Philadelphia

    Google Scholar 

  15. Antzelevitch C, Fish J (2001) Electrical heterogeneity within the ventricular wall. Basic Res Cardiol 96:517–527. https://doi.org/10.1007/s003950170002

    Article  CAS  PubMed  Google Scholar 

  16. Cunningham JG (2002) Textbook of veterinary physiology. Saunders

    Google Scholar 

  17. Bers DM (2002) Cardiac excitation-contraction coupling. Nature 415:198–205. https://doi.org/10.1038/415198a

    Article  CAS  Google Scholar 

  18. Fabiato A, Fabiato F (1979) Use of chlorotetracycline fluorescence to demonstrate Ca2+-induced release of Ca2+ from the sarcoplasmic reticulum of skinned cardiac cells. Nature 281:146–148. https://doi.org/10.1038/281146a0

    Article  CAS  PubMed  Google Scholar 

  19. Myles RC, Wang L, Kang C et al (2012) Local beta-adrenergic stimulation overcomes source-sink mismatch to generate focal arrhythmia. Circ Res 110:1454–1464. https://doi.org/10.1161/circresaha.111.262345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Xie Y, Sato D, Garfinkel A et al (2010) So little source, so much sink: requirements for afterdepolarizations to propagate in tissue. Biophys J 99:1408–1415. https://doi.org/10.1016/j.bpj.2010.06.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Park SA, Gray RA (2015) Optical mapping of ventricular fibrillation dynamics. Adv Exp Med Biol 859:313–342. https://doi.org/10.1007/978-3-319-17641-3_13

    Article  PubMed  Google Scholar 

  22. Boyle PM, Park CJ, Arevalo HJ et al (2014) Sodium current reduction unmasks a structure-dependent substrate for arrhythmogenesis in the normal ventricles. PLoS One 9:e86947. https://doi.org/10.1371/journal.pone.0086947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mitchell GA (1953) The innervation of the heart. Br Heart J 15:159–171. https://doi.org/10.1136/hrt.15.2.159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Van Stee EW (1978) Autonomic innervation of the heart. Environ Health Perspect 26:151–158

    Article  Google Scholar 

  25. Kimura K, Ieda M, Fukuda K (2012) Development, maturation, and transdifferentiation of cardiac sympathetic nerves. Circ Res 110:325–336. https://doi.org/10.1161/CIRCRESAHA.111.257253

    Article  CAS  PubMed  Google Scholar 

  26. Fukuda K, Kanazawa H, Aizawa Y et al (2015) Cardiac innervation and sudden cardiac death. Circ Res 116:2005–2019. https://doi.org/10.1161/CIRCRESAHA.116.304679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hasan W (2013) Autonomic cardiac innervation: development and adult plasticity. Organogenesis 9:176–193. https://doi.org/10.4161/org.24892

    Article  PubMed  PubMed Central  Google Scholar 

  28. Franzoso M, Zaglia T, Mongillo M (2016) Putting together the clues of the everlasting neuro-cardiac liaison. Biochim Biophys Acta 1863:1904–1915. https://doi.org/10.1016/j.bbamcr.2016.01.009

    Article  CAS  PubMed  Google Scholar 

  29. Pianca N, Di Bona A, Lazzeri E et al (2019) Cardiac sympathetic innervation network shapes the myocardium by locally controlling cardiomyocyte size through the cellular proteolytic machinery. J Physiol 597:3639–3656. https://doi.org/10.1113/JP276200

    Article  CAS  PubMed  Google Scholar 

  30. Luttrell LM (2006) Transmembrane signaling by G protein-coupled receptors. Methods Mol Biol 332:3–49. https://doi.org/10.1385/1-59745-048-0:1

    Article  CAS  PubMed  Google Scholar 

  31. Chruscinski AJ, Rohrer DK, Schauble E et al (1999) Targeted disruption of the beta2 adrenergic receptor gene. J Biol Chem 274:16694–16700. https://doi.org/10.1074/jbc.274.24.16694

    Article  CAS  PubMed  Google Scholar 

  32. Bernstein D, Fajardo G, Zhao M et al (2005) Differential cardioprotective/cardiotoxic effects mediated by beta-adrenergic receptor subtypes. Am J Physiol Heart Circ Physiol 289:H2441–H2449. https://doi.org/10.1152/ajpheart.00005.2005

    Article  CAS  PubMed  Google Scholar 

  33. Opie LH (2004) Heart physiology: from cell to circulation, 4th edn. Lippincott Williams and Wilkins, Philadelphia

    Google Scholar 

  34. Volgraf M, Gorostiza P, Numano R et al (2006) Allosteric control of an ionotropic glutamate receptor with an optical switch. Nat Chem Biol 2:47–52. https://doi.org/10.1038/nchembio756

    Article  CAS  PubMed  Google Scholar 

  35. Banghart M, Borges K, Isacoff E et al (2004) Light-activated ion channels for remote control of neuronal firing. Nat Neurosci 7:1381–1386. https://doi.org/10.1038/nn1356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zemelman BV, Lee GA, Ng M, Miesenböck G (2002) Selective photostimulation of genetically chARGed neurons. Neuron 33:15–22. https://doi.org/10.1016/S0896-6273(01)00574-8

    Article  CAS  PubMed  Google Scholar 

  37. Lima SQ, Miesenbock G (2005) Remote control of behavior through genetically targeted photostimulation of neurons. Cell 121:141–152. https://doi.org/10.1016/j.cell.2005.02.004

    Article  CAS  PubMed  Google Scholar 

  38. Zhang F, Vierock J, Yizhar O et al (2011) The microbial opsin family of optogenetic tools. Cell 147:1446–1457. https://doi.org/10.1016/j.cell.2011.12.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nagel G, Szellas T, Huhn W et al (2003) Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci U S A 100:13940–13945. https://doi.org/10.1073/pnas.1936192100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hegemann P, Nagel G (2013) From channelrhodopsins to optogenetics. EMBO Mol Med 5:173–176. https://doi.org/10.1002/emmm.201202387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Miller G (2006) Optogenetics. Shining new light on neural circuits. Science 314:1674–1676. https://doi.org/10.1126/science.314.5806.1674

    Article  CAS  PubMed  Google Scholar 

  42. Nagel G, Brauner M, Liewald JF et al (2005) Light activation of Channelrhodopsin-2 in excitable cells of caenorhabditis elegans triggers rapid behavioral responses. Curr Biol 15:2279–2284. https://doi.org/10.1016/j.cub.2005.11.032

    Article  CAS  PubMed  Google Scholar 

  43. Berndt A, Deisseroth K (2015) Expanding the optogenetics toolkit. Science 349:590–591. https://doi.org/10.1126/science.aac7889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhao S, Cunha C, Zhang F et al (2008) Improved expression of halorhodopsin for light-induced silencing of neuronal activity. Brain Cell Biol 36:141–154. https://doi.org/10.1007/s11068-008-9034-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chow BY, Han X, Dobry AS et al (2010) High-performance genetically targetable optical neural silencing by light-driven proton pumps. Nature 463:98–102. https://doi.org/10.1038/nature08652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Govorunova EG, Sineshchekov OA, Janz R et al (2015) Natural light-gated anion channels: a family of microbial rhodopsins for advanced optogenetics. Science 349:647–650. https://doi.org/10.1126/science.aaa7484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Govorunova EG, Sineshchekov OA, Spudich JL (2016) Proteomonas sulcata ACR1: a fast anion channelrhodopsin. Photochem Photobiol 92:257–263. https://doi.org/10.1111/php.12558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sineshchekov OA, Govorunova EG, Li H, Spudich JL (2015) Gating mechanisms of a natural anion channelrhodopsin. Proc Natl Acad Sci U S A 112:14236–14241. https://doi.org/10.1073/pnas.1513602112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gradinaru V, Thompson KR, Deisseroth K (2008) eNpHR: a Natronomonas halorhodopsin enhanced for optogenetic applications. Brain Cell Biol 36:129–139. https://doi.org/10.1007/s11068-008-9027-6

    Article  PubMed  PubMed Central  Google Scholar 

  50. Brown J, Behnam R, Coddington L et al (2018) Expanding the optogenetics toolkit by topological inversion of rhodopsins. Cell 175:1131–1140.e11. https://doi.org/10.1016/j.cell.2018.09.026

    Article  CAS  PubMed  Google Scholar 

  51. Deisseroth K (2011) Optogenetics. Nat Methods 8:26–29. https://doi.org/10.1038/nmeth.f.324

    Article  CAS  PubMed  Google Scholar 

  52. Sasse P (2011) Optical pacing of the heart: the long way to enlightenment. Circ Arrhythm Electrophysiol 4:598–600. https://doi.org/10.1161/circep.111.965400

    Article  PubMed  Google Scholar 

  53. Zhao S, Ting JT, Atallah HE et al (2011) Cell type-specific channelrhodopsin-2 transgenic mice for optogenetic dissection of neural circuitry function. Nat Methods 8:745–755. https://doi.org/10.1038/nmeth.1668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ting JT, Feng G (2013) Development of transgenic animals for optogenetic manipulation of mammalian nervous system function: progress and prospects for behavioral neuroscience NIH public access. Behav Brain Res 255:3–18. https://doi.org/10.1016/j.bbr.2013.02.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Parr-Brownlie LC, Bosch-Bouju C, Schoderboeck L et al (2015) Lentiviral vectors as tools to understand central nervous system biology in mammalian model organisms. Front Mol Neurosci 8:14

    Article  Google Scholar 

  56. Alex A, Li A, Tanzi RE, Zhou C (2015) Optogenetics: optogenetic pacing in drosophila melanogaster. Sci Adv 1:e1500639. https://doi.org/10.1126/sciadv.1500639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Arrenberg AB, Stainier DY, Baier H, Huisken J (2010) Optogenetic control of cardiac function. Science 330:971–974. https://doi.org/10.1126/science.1195929

    Article  CAS  PubMed  Google Scholar 

  58. Nussinovitch U, Gepstein L (2015) Optogenetics for in vivo cardiac pacing and resynchronization therapies. Nat Biotechnol 33:750–754. https://doi.org/10.1038/nbt.3268

    Article  CAS  PubMed  Google Scholar 

  59. Zaglia T, Milan G, Franzoso M et al (2013) Cardiac sympathetic neurons provide trophic signal to the heart via beta2-adrenoceptor-dependent regulation of proteolysis. Cardiovasc Res 97:240–250. https://doi.org/10.1093/cvr/cvs320

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was possible thanks to: StarsWiC “miniheartwork” to M.M., Stars “SKoOP” to T.Z., both from UNIPD. We thank the collaborators who have, in time, contributed to set up the described method, especially Drs Francesca Da Broi, Valentina Prando, and Anna Pia Plazzo.

This is not intended to be a review on optogenetics, and we apologize to the colleagues who have made seminal discoveries that have not been cited here.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tania Zaglia or Marco Mongillo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Dokshokova, L., Pianca, N., Zaglia, T., Mongillo, M. (2022). Optogenetic Control of Heart Rhythm: Lightly Guiding the Cardiac Pace. In: Zaccolo, M. (eds) cAMP Signaling. Methods in Molecular Biology, vol 2483. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2245-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2245-2_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2244-5

  • Online ISBN: 978-1-0716-2245-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics