Skip to main content
Log in

The role of the vgf gene and VGF-derived peptides in nutrition and metabolism

  • Review
  • Published:
Genes & Nutrition Aims and scope Submit manuscript

Abstract

Energy homeostasis is a complex physiological function coordinated at multiple levels. The issue of genetic regulation of nutrition and metabolism is attracting increasing interest and new energy homeostasis-regulatory genes are continuously identified. Among these genes, vgf is gaining increasing interest following two observations: (1) VGF-/- mice have a lean and hypermetabolic phenotype; (2) the first VGF-derived peptide involved in energy homeostasis, named TLQP-21, has been identified. The aim of this review will be to discuss the role of the vgf gene and VGF derived peptides in metabolic and nutritional functions. In particular we will: (1) provide a brief overview on the central systems regulating energy homeostasis and nutrition particularly focusing on the melanocortin system; (2) introduce the structure and molecular characteristic of vgf; (3) describe the phenotype of VGF deficient mice; (4) present recent data on the metabolic role of VGF-derived peptides, particularly focusing on one peptide named TLQP-21.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Adage T, Scheurink AJ, de Boer SF, de Vries K, Konsman JP, Kuipers F, Adan RA, Baskin DG, Schwartz MW, van Dijk G (2001) Hypothalamic, metabolic, and behavioral responses to pharmacological inhibition of CNS melanocortin signaling in rats. J Neurosci 21:3639–3645

    PubMed  CAS  Google Scholar 

  2. Alder J, Thakker-Varia S, Bangasser DA, Kuroiwa M, Plummer MR, Shors TJ, Black IB (2003) Brain-derived neurotrophic factor-induced gene expression reveals novel actions of vgf in hippocampal synaptic plasticity. J Neurosci 23:10800–10808

    PubMed  CAS  Google Scholar 

  3. Amir S, Schiavetto A (1990) Injection of prostaglandin E2 into the anterior hypothalamic preoptic area activates brown adipose tissue thermogenesis in the rat. Brain Res 528:138–142

    Article  PubMed  CAS  Google Scholar 

  4. Bachman ES, Dhillon H, Zhang CY, Cinti S, Bianco AC, Kobilka BK, Lowell BB (2002) beta-AR signaling required for diet-induced thermogenesis and obesity resistance. Science 297:843–845

    Article  PubMed  CAS  Google Scholar 

  5. Badman MK, Flier JS (2005) The gut and energy balance: visceral allies in the obesity wars. Science 307:1909–1914

    Article  PubMed  CAS  Google Scholar 

  6. Baile CA, McLaughlin CL, Della-Fera MA (1986) Role of cholecystokinin and opioid peptides in control of food intake. Physiol Rev 66:172–234

    PubMed  CAS  Google Scholar 

  7. Balthasar N, Dalgaard LT, Lee CE, Yu J, Funahashi H, Williams T, Ferreira M, Tang V, McGovern RA, Kenny CD, Christiansen LM, Edelstein E, Choi B, Boss O, Aschkenasi C, Zhang C, Mountjoy K, Kishi T, Elmquist JK, Lowell BB (2005) Divergence of melanocortin pathaways in the control of food intake and energy expenditure. Cell 123:493–505

    Article  PubMed  CAS  Google Scholar 

  8. Barrett P, Ross AW, Balik A, Littlewood PA, Mercer JG, Moar KM, Sallmen T, Kaslin J, Panula P, Schuhler S, Ebling FJ, Ubeaud C, Morgan PJ (2005) Photoperiodic regulation of histamine H3 receptor and VGF messenger ribonucleic acid in the arcuate nucleus of the Siberian hamster. Endocrinology 146:1930–1939

    Article  PubMed  CAS  Google Scholar 

  9. Barsh GS, Ollmann MM, Wilson BD, Miller KA, Gunn TM (1999) Molecular pharmacology of agouti protein in vitro and in vivo. Ann NY Acad Sci 885:143–152

    Article  PubMed  CAS  Google Scholar 

  10. Bartness TJ, Bamshad M (1998) Innervation of mammalian white adipose tissue: implications for the regulation of total body fat. Am J Physiol 275:R1399–R1411

    PubMed  CAS  Google Scholar 

  11. Bartolomucci A, La Corte G, Possenti R, Locatelli V, Rigamonti AE, Torsello A, Bresciani E, Bulgarelli I, Rizzi R, Pavone F, D’Amato FR, Severini C, Mignogna G, Giorgi A, Schininà ME, Elia AG, Brancia C, Ferri G-L, Conti R, Ciani B, Pascucci T, Dell’Omo G, Muller EE, Levi A, Moles A (2006) TLQP-21, a VGF-derived peptide, increases energy expenditure and prevents the early phase of diet-induced obesity. Proc Natl Acad Sci USA 103:14584–14589

    Article  PubMed  CAS  Google Scholar 

  12. Bartolomucci A, Rigamonti AE, Bulgarelli I, Torsello A, Locatelli V, Pavone F, Levi A, Possenti R, Muller EE, Moles A (2007) Chronic intracerebroventricular TLQP-21 delivery does not modulate the GH/IGF-1-axis and muscle strength in mice. Growth Horm IGF Res 17:342–345

    Article  PubMed  CAS  Google Scholar 

  13. Beck B (2001) KO’s and organization of peptidergic feeding behavior mechanisms. Neurosci Biobehav Rev 25:143–158

    Article  PubMed  CAS  Google Scholar 

  14. Bergen HT, Mizuno TM, Taylor J, Mobbs CV (1998) Hyperphagia and weight gain after gold-thioglucose: relation to hypothalamic neuropeptide Y and proopiomelanocortin. Endocrinology 139:4483–4488

    Article  PubMed  CAS  Google Scholar 

  15. Bowers RR, Festuccia WT, Song CK, Shi H, Migliorini RH, Bartness TJ (2004) Sympathetic innervation of white adipose tissue and its regulation of fat cell number. Am J Physiol Regul Integr Comp Physiol 286:R1167–R1175

    PubMed  CAS  Google Scholar 

  16. Cannon B, Nedegaard J (2004) Brown adipose tissue: function and physiological significance. Physiol Rev 84:277–359

    Article  PubMed  CAS  Google Scholar 

  17. Castanon N, Scearce-Levie K, Lucas JJ, Rocha B, Hen R (2000) Modulation of the effects of cocaine by 5-HT1B receptors: a comparison of knockouts and antagonists. Pharmacol Biochem Behav 67:559–566

    Article  PubMed  CAS  Google Scholar 

  18. Cederberg A, Grønning LM, Ahren B, Tasken K, Carlsson P, Enerback S (2001) FOXC2 is a winged helix gene that counteracts obesity, hypertriglyceridemia, and diet-induced insulin resistance. Cell 106:563–573

    Article  PubMed  CAS  Google Scholar 

  19. Chakraborty TR, Tkalych O, Nanno D, Garcia AL, Devi LA, Salton SR (2006) Quantification of VGF- and pro-SAAS-derived peptides in endocrine tissues and the brain, and their regulation by diet and cold stress. Brain Res 1089:21–32

    Article  PubMed  CAS  Google Scholar 

  20. Cinti S (2005) The adipose organ. Prostaglandins Leukot Essent Fatty Acids 73:9–15

    Article  PubMed  CAS  Google Scholar 

  21. Cocco C, Brancia C, Pirisi I, D'Amato F, Noli B, Possenti R, Ferri GL (2007) VGF metabolic-related gene: distribution of its derived peptides in mammalian pancreatic islets. J Histochem Cytochem 55:619–628

    Article  PubMed  CAS  Google Scholar 

  22. Cone RD (2005) Anatomy and regulation of the central melanocortin system. Nat Neurosci 8:571–578

    Article  PubMed  CAS  Google Scholar 

  23. Elliott JC, Harrold JA, Brodin P, Enquist K, Backman A, Bystrom M, Lindgren K, King P, Williams G (2004) Increases in melanin-concentrating hormone and MCH receptor levels in the hypothalamus of dietary-obese rats. Mol Brain Res 128:150–159

    Article  PubMed  CAS  Google Scholar 

  24. Evans RM, Barish GD, Wang Y-X (2004) PPARs and the complex journey to obesity. Nat Med 10:1–7

    Article  CAS  Google Scholar 

  25. Ferri GL, Levi A, Possenti R (1992) A novel neuroendocrine gene product: selective VGF8a gene expression and immuno-localisation of the VGF protein in endocrine and neuronal populations. Brain Res Mol Brain Res 13:139–143

    Article  PubMed  CAS  Google Scholar 

  26. Flier JS (2004) Obesity wars: molecular progress confronts an expanding epidemic. Cell 116:337–350

    Article  PubMed  CAS  Google Scholar 

  27. Fliers E, Kreier F, Voshol PJ, Havekes LM, Sauerwein HP, Kalsbeek A, Buijs RM, Romijn JA (2003) White adipose tissue: getting nervous. J Neuroendocrinol 15:1005–1010

    Article  PubMed  CAS  Google Scholar 

  28. Friedman JM, Halaas JL (1998) Leptin and the regulation of body weight in mammals. Nature 395:763–770

    Article  PubMed  CAS  Google Scholar 

  29. Friedman JM (2004) Modern science versus the stigma of obesity. Nat Med 10:563–569

    Article  PubMed  CAS  Google Scholar 

  30. Garcia AL, Han SK, Janssen WG, Khaing ZZ, Ito T, Glucksman MJ, Benson DL, Salton SR (2005) A prohormone convertase cleavage site within a predicted alpha-helix mediates sorting of the neuronal and endocrine polypeptide VGF into the regulated secretory pathway. J Biol Chem 280:41595–41608

    Article  PubMed  CAS  Google Scholar 

  31. Gerlai R (1996) Gene-targeting studies of mammalian behavior: is it the mutation or the background genotype? Trends Neurosci 19:177–181

    Article  PubMed  CAS  Google Scholar 

  32. Gingrich JA, Hen R (2000) The broken mouse: the role of development, plasticity and environment in the interpretation of phenotipic changes in knockout mice. Curr Opin Neurobiol 10:146–152

    Article  PubMed  CAS  Google Scholar 

  33. Hahm S, Mizuno TM, Wu TJ, Wisor JP, Priest CA, Kozak CA, Boozer CN, Peng B, McEvoy RC, Good P, Kelley KA, Takahashi JS, Pintar JE, Roberts JL, Mobbs CV, Salton SRJ (1999) Targeted deletion of the Vgf gene indicates that the encoded secretory peptide precursor plays a novel role in the regulation of energy balance. Neuron 23:537–548

    Article  PubMed  CAS  Google Scholar 

  34. Hahm S, Fekete C, Mizuno TM, Windsor J, Yan H, Boozer CN, Lee C, Elmquist JK, Lechan RM, Mobbs CV, Salton SRJ (2002) VGF is required for obesity induced by diet, gold thioglucose treatment and agouti, and is differentially regulated in POMC- and NPY-containing arcuate neurons in response to fasting. J Neurosci 22:6929–6938

    PubMed  CAS  Google Scholar 

  35. Heleniak EP, Aston B (1989) Prostaglandins, brown fat and weight loss. Med Hypotheses 28:13–33

    Article  PubMed  CAS  Google Scholar 

  36. Horvath TL (2005) The hardship of obesity: a soft-wired hypothalamus. Nat Neurosci 8:561–565

    Article  PubMed  CAS  Google Scholar 

  37. Huang JT, Leweke FM, Oxley D, Wang L, Harris N, Koethe D, Gerth CW, Nolden BM, Gross S, Schreiber D, Reed B, Bahn S (2006) Disease biomarkers in cerebrospinal fluid of patients with firstonset psychosis. PLoS Med 3:e428

    Article  PubMed  CAS  Google Scholar 

  38. Huang JT, Leweke FM, Tsang TM, Koethe D, Kranaster L, Gerth CW, Gross S, Schreiber D, Ruhrmann S, Schultze-Lutter F, Klosterkotter J, Holmes E, Bahn S (2007) CSF metabolic and proteomic profiles in patients prodromal for psychosis. PLoS ONE 2:e756

    Article  PubMed  CAS  Google Scholar 

  39. Jethwa PH, Warner A, Brameld JM, Keyte JW, Nilaweera NK, Morgan PJ, Barrett P, Ebling FJP (2006) The role of a VGF derived peptide in the regulation of food intake in a seasonal rodent. Front Neuroendocrinol 27:5–6

    Article  Google Scholar 

  40. Jethwa PH, Warner A, Nilaweera KN, Brameld JM, Keyte JW, Carter WG, Bolton N, Bruggraber M, Morgan PJ, Barrett P, Ebling FJ (2007) VGF-derived peptide, TLQP-21, regulates food intake and body weight in Siberian hamsters. Endocrinology 148:4044–4055

    Article  PubMed  CAS  Google Scholar 

  41. Jimenez M, Leger B, Canola K, Lehr L, Arboit P, Seydoux J, Russell AP, Giacobino JP, Muzzin P, Preitner F (2002) β1/(β2/(β3-adrenoreceptor knockout mice are obese and cold sensitive but have normal lipolytic responses to fasting. FEBS Lett 530:37–40

    Article  PubMed  CAS  Google Scholar 

  42. Kaput J, Astley S, Renkema M, Ordovas J, van Ommen B (2006) Harnessing nutrigenomics: development of web-based communication, databases, resources, and tools. Genes Nutr 1:5–12

    CAS  PubMed  Google Scholar 

  43. Konsman JP, Parnet P, Dantzer R (2002) Cytokines-induced sickness behavior: mechanisms and implications. Trends Neurosci 25:154–159

    Article  PubMed  CAS  Google Scholar 

  44. Kranenburg O, Gent YY, Romijn EP, Voest EE, Heck AJ, Gebbink MF (2005) Amyloid-beta-stimulated plasminogen activation by tissue-type plasminogen activator results in processing of neuroendocrine factors. Neuroscience 131:877–886

    Article  PubMed  CAS  Google Scholar 

  45. Lam TK, Schwartz GJ, Rossetti L (2005) Hypothalamic sensing of fatty acids. Nat Neurosci 8:579–584

    Article  PubMed  CAS  Google Scholar 

  46. Larsen TM, Toubro S, van Baak MA, Gottesdiener KM, Larson P, Saris WHM, Astrup A (2002) Effect of a 28-d treatment with L-796568, a novel β3-adrenergic receptor agonist, on energy expenditure and body composition in obese men. Am J Clin Nutr 76:780–788

    PubMed  CAS  Google Scholar 

  47. Leibowitz SF, Wortley KE (2004) Hypothalamic control of energy balance: different peptides, different functions. Peptides 25:473–504

    Article  PubMed  CAS  Google Scholar 

  48. Levi A, Eldridge JD, Paterson BM (1985) Molecular cloning of a gene sequence regulated by nerve growth factor. Science 229:393–395

    Article  PubMed  CAS  Google Scholar 

  49. Levi A, Ferri GL, Watson E, Possenti R, Salton SR (2004) Processing, distribution, and function of VGF, a neuronal and endocrine peptide precursor. Cell Mol Neurobiol 24:517–533

    Article  PubMed  CAS  Google Scholar 

  50. Lim J, Berezniuk I, Che F-Y, Parikh R, Biswas R, Pan H, Fricker LD (2006) Altered neuropeptide processing in prefrontal cortex of Cpefat/fat mice: implications for neuropeptide discovery. J Neurochem 96:1169–1181

    Article  PubMed  CAS  Google Scholar 

  51. Liu JW, Andrews PC, Mershon JL, Yan C, Allen DL, Ben-Jonathan N (1994) Peptide V: a VGF-derived neuropeptide purified from bovine posterior pituitary. Endocrinology 135:2742–2748

    Article  PubMed  CAS  Google Scholar 

  52. Lowell BB, Flier JS (1997) Brown adipose tissue, β3-adrenergic receptors, and obesity. Annu Rev Med 48:307–316

    Article  PubMed  CAS  Google Scholar 

  53. Lowell BB, Spiegelman BM (2000) Toward a molecular understanding of adaptive thermogenesis. Nature 404:652–660

    PubMed  CAS  Google Scholar 

  54. Morgan PJ, Ross AW, Mercer JG, Barrett P (2006) What can we learn from seasonal animals about the regulation of energy balance? Prog Brain Res 153:325–337

    Article  PubMed  CAS  Google Scholar 

  55. Morris MJ, Tortelli CF, Filippis A, Proietto J (1998) Reduced BAT function as a mechanism for obesity in the hypophagic, neuropeptide Y deficient monosodium glutamate-treated rat. Regul Pept 25:441–447

    Article  Google Scholar 

  56. Netea MG, Joosten LA, Lewis E, Jensen DR, Voshol PJ, Kullberg BJ, Tack CJ, van Krieken H, Kim SH, Stalenhoef AF, van de Loo FA, Verschueren I, Pulawa L, Akira S, Eckel RH, Dinarello CA, van den Berg W, van der Meer JW (2006) Deficiency of interleukin-18 in mice leads to hyperphagia, obesity and insulin resistance. Nat Med 12:650–656

    Article  PubMed  CAS  Google Scholar 

  57. Nogueiras R, Tovar S, Mitchell SE, Rayner DV, Archer ZA, Dieguez C, Williams LM (2004) Regulation of hormone segretagogue receptor gene expression in the arcuate nuclei of the rat by leptin and ghrelin. Diabetes 53:2552–2558

    Article  PubMed  CAS  Google Scholar 

  58. Nonogaki K (2000) New insights into sympathetic regulation of glucose and fat metabolism. Diabetologia 43:533–549

    Article  PubMed  CAS  Google Scholar 

  59. Obici S, Feng Z, Arduini A, Conti R, Rossetti L (2003) Inhibition of hypothalamic carnitine palmitoyltransferase-1 decreases food intake and glucose production. Nat Med 9:56–61

    Article  CAS  Google Scholar 

  60. Orci L, Cook WS, Ravazzola M, Wang MY, Park BH, Montesano R, Unger RH (2004) Rapid transformation of white adipocytes into fat-oxidizing machines. Proc Natl Acad Sci USA 101:2058–2063

    Article  PubMed  CAS  Google Scholar 

  61. Pan H, Nanno D, Che F-H, Zhu X, Salton SR, Steiner DF, Fricker LD, Devi LA (2005) Neuropeptide processing profile in mice lacking prohormone convertase-1. Biochemistry 44:4939–4948

    Article  PubMed  CAS  Google Scholar 

  62. Pasinetti GM, Ungar LH, Lange DJ, Yemul S, Deng H, Yuan X, Brown RH, Cudkowicz ME, Newhall K, Peskind E, Marcus S, Ho L (2006) Identification of potential CSF biomarkers in ALS. Neurology 66:1218–1222

    Article  PubMed  CAS  Google Scholar 

  63. Pizzi WJ, Barnhart JE (1976) Effects of monosodium glutamate on somatic development, obesity and activity in the mouse. Pharmacol Biochem Behav 5:551–557

    Article  PubMed  CAS  Google Scholar 

  64. Possenti R, Eldridge JD, Paterson BM, Grasso A, Levi A (1989) A protein-induced by NGF in PC12 cells is stored in secretory vescicles and released through the regulated pathway. EMBO J 8:2217–2223

    PubMed  CAS  Google Scholar 

  65. Possenti R, Rinaldi AM, Ferri GL, Borboni P, Trani E, Levi A (1999) Expression, processing, and secretion of the neuroendocrine VGF peptides by INS-1 cells. Endocrinology 140:3727–3235

    Article  PubMed  CAS  Google Scholar 

  66. Rayner DV (2001) The sympathetic nervous system in white adipose tissue regulation. Proc Nutr Soc 60:357–364

    PubMed  CAS  Google Scholar 

  67. Rindi G, Licini L, Necchi V, Bottarelli L, Campanini N, Azzoni C, Favret M, Giordano G, D'Amato F, Brancia C, Solcia E, Ferri GL (2007) Peptide products of the neurotrophin-inducible gene vgf are produced in human neuroendocrine cells from early development and increase in hyperplasia and neoplasia. J Clin Endocrinol Metab 92:2811–2815

    Article  PubMed  CAS  Google Scholar 

  68. Riu E, Ferre T, Hidalgo A, Mas A, Franckhauser S, Otaegui P, Bosch F (2003) Overexpression of c-myc in the liver prevents obesity and insulin resistance. FASEB J 17:1715–1717

    PubMed  CAS  Google Scholar 

  69. Robinson SW, Dinulescu DM, Cone RD (2000) Genetic models of obesity and energy balance in the mouse. Annu Rev Genet 34:687–745

    Article  PubMed  CAS  Google Scholar 

  70. Rocha BA, Scearce-Levie K, Lucas JJ, Hiroi N, Castanon N, Crabbe JC, Nestler EJ, Hen R (1998) Increased vulnerability to cocaine in mice lacking the serotonin-1B receptor. Nature 393:175–178

    Article  PubMed  CAS  Google Scholar 

  71. Ross AW, Bell LM, Littlewood PA, Mercer JG, Barrett P, Morgan PJ (2005) Temporal changes in gene expression in the arcuate nucleus precede seasonal responses in adiposity and reproduction. Endocrinology 146:1940–1947

    Article  PubMed  CAS  Google Scholar 

  72. Rossi A, Granata F, Augusti-Tocco G, Canu N, Levi A, Possenti R (1992) Expression in murine and human neuroblastoma cell lines of VGF, a tissue specific protein. Int J Dev Neurosci 10:527–534

    Article  PubMed  CAS  Google Scholar 

  73. Sahu A (2003) Leptin signaling in the hypothalamus: emphasis on energy homeostasis and leptin resistance. Front Neuroendocrinol 24:225–253

    Article  PubMed  CAS  Google Scholar 

  74. Salton SRJ, Fischberg DJ, Dong K-W (1991) Structure of the gene encoding VGF, a nervous system-specific mRNA that is rapidly and selectively induced by nerve growth factor in PC12 cells. Mol Cell Biol 11:2335–2349

    PubMed  CAS  Google Scholar 

  75. Salton SR, Ferri GL, Hahm S, Snyder SE, Wilson AJ, Possenti R, Levi A (2000a) VGF: a novel role for this neuronal and neuroendocrine polipeptide in the regulation of energy balance. Front Neuroendocrinol 21:199–219

    Article  PubMed  CAS  Google Scholar 

  76. Salton SR, Hahm S, Mizuno TM (2000b) Of mice and MEN: what transgenic models tell us about hypothalamic control of energy balance. Neuron 25:265–268

    Article  PubMed  CAS  Google Scholar 

  77. Schwartz MW, Woods SC, Porte D Jr, Seeley RJ, Baskin DG (2000) Central nervous system control of food intake. Nature 404:661–671

    PubMed  CAS  Google Scholar 

  78. Snyder SE, Cheng HW, Murray KD, Isackson PJ, McNeill TH, Salton SR (1998) The messenger RNA encoding VGF, a neuronal peptide precursor, is rapidly regulated in the rat central nervous system by neuronal activity, seizure and lesion. Neuroscience 82:7–19

    Article  PubMed  CAS  Google Scholar 

  79. Song CK, Jackson RM, Harris RBS, Richard D, Bartness TJ (2005) Melanocortin-4 receptor mRNA is expressed in sympathetic nervous system outflow neurons to white adipose tissue. Am J Physiol Regul Integr Comp Physiol 289:R1467–R1476

    PubMed  CAS  Google Scholar 

  80. Stark M, Danielsson O, Griffiths WJ, Jornvall H, Johansson J (2001) Peptide repertoire of human cerebrospinal fluid: novel proteolytic fragments of neuroendocrine proteins. J Chromatogr B Biomed Sci Appl 754:357–367

    Article  PubMed  CAS  Google Scholar 

  81. Strubbe JH, van Dijk G (2002) The temporal organization of ingestive behaviour and its interaction with regulation of energy balance. Neurosci Biobehav Rev 26:485–498

    Article  PubMed  Google Scholar 

  82. Succu S, Cocco C, Mascia MS, Melis T, Melis MR, Possenti R, Levi A, Ferri GL, Argiolas A (2004) Pro-VGF-derived peptides induce penile erection in male rats: possible involvement of oxytocin. Eur J Neurosci 20:3035–3040

    Article  PubMed  Google Scholar 

  83. Succu S, Mascia MS, Melis T, Sanna F, Melis MR, Possenti R, Argiolas A (2005) Pro-VGF-derived peptides induce penile erection in male rats: involvement of paraventricular nitric oxide. Neuropharmacology 49:1017–1025

    Article  PubMed  CAS  Google Scholar 

  84. Tiraby C, Langin D (2003) Conversion from white to brown adipocytes: a strategy for the control of fat mass. Trends Endocrinol Metab 14:439–441

    Article  PubMed  CAS  Google Scholar 

  85. Trani E, Ciotti T, Rinaldi AM, Canu N, Ferri GL, Levi A, Possenti R (1995) Tissue-specific processing of the neuroendocrine protein VGF. J Neurochem 65:2441–2449

    Article  PubMed  CAS  Google Scholar 

  86. Trani E, Giorni A, Canu N, Amadoro G, Rinaldi AM, Halban PA, Ferri GL, Possenti R, Schinina ME, Levi A (2002) Isolation and characterization of VGF peptides in rat brain. Role of PC1/3 and PC2 in the maturation of VGF precursor. J Neurochem 81:565–574

    Article  PubMed  CAS  Google Scholar 

  87. Uyama N, Geerts A, Reynaert H (2004) Neural connections between the hypothalamus and the liver. Anat Rec Discov Mol Cell Evol Biol 280:808–820

    Article  Google Scholar 

  88. van den Pol AN, Decavel C, Levi A, Paterson B (1989) Hypothalamic expression of a novel gene product, VGF: immunocytochemical analysis. J Neurosci 9:4122–4137

    PubMed  Google Scholar 

  89. Wang Y, Lee C-H, Tiep S, Yu RT, Ham J, Kang H, Evans RM (2003) Peroxisome-proliferator-activated receptor δ activates fat metabolism to prevent obesity. Cell 113:159–170

    Article  PubMed  CAS  Google Scholar 

  90. Watson E, Hahm S, Mizuno TM, Windsor J, Montgomery C, Scherer PE, Mobbs CV, Salton SR (2005) VGF ablation blocks the development of hyperinsulinemia and hyperglycemia in several mouse models of obesity. Endocrinology 146:5151–5163

    Article  PubMed  CAS  Google Scholar 

  91. Wedenoja J, Loukola A, Tuulio-Henriksson A, Paunio T, Ekelund J, Silander K, Varilo T, Heikkila K, Suvisaari J, Partonen T, Lonnqvist J, Peltonen L (2007) Replication of linkage on chromosome 7q22 and association of the regional Reelin gene with working memory in schizophrenia families. Mol Psychiatry (in press)

  92. Wisor JP, Takahashi JS (1997) Regulation of the vgf gene in the golden hamster suprachiasmatic nucleus by light and by the circadian clock. J Comp Neurol 378:229–238

    Article  PubMed  CAS  Google Scholar 

  93. Yamaguchi H, Sasaki K, Satomi Y, Shimbara T, Kageyama H, Mondal MS, Toshinai K, Date Y, Gonzalez LJ, Shioda S, Takao T, Nakazato M, Minamino N (2006) Peptidomic identification and biological validation of neuroendocrine regulatory Peptide-1 and -2. J Biol Chem 282:26354–26360

    Article  CAS  Google Scholar 

  94. Yaswen L, Diehl N, Brennan MB, Hochgeschwender U (1999) Obesity in the mouse model of pro-opiomelanocortin deficiency responds to peripheral melanocortin. Nat Med 5:1066–1070

    Article  PubMed  CAS  Google Scholar 

  95. Yuan X, Desiderio DM (2005) Human cerebrospinal fluid peptidomics. J Mass Spectrom 40:176–181

    Article  PubMed  CAS  Google Scholar 

  96. Zhang JV, Ren PG, Avsian-Kretchmer O, Luo CW, Rauch R, Klein C, Hsueh AJ (2005) Obestatin, a peptide encoded by the ghrelin gene, opposes ghrelin’s effects on food intake. Science 310:996–999

    Article  PubMed  CAS  Google Scholar 

  97. Zigman JM, Nakano Y, Coppari R, Balthasar N, Marcus JN, Lee CE, Jones JE, Deysher AE, Waxman AR, White RD, Williams TD, Lachey JL, Seeley RJ, Lowell BB, Elmquist JK (2006) Mice lacking ghrelin receptors resist the development of diet induced obesity. J Clin Invest 115:3564–3572

    Article  CAS  Google Scholar 

  98. Ziotopulou M, Mantzoros CS, Hileman SM, Flier JS (2000) Differential expression of hypothalamic neuropeptides in the early phase of diet-induced obesity in mice. Am J Physiol Endocrinol Metab 279:E838–E845

    Google Scholar 

Download references

Acknowledgments

Thanks are due to G. La Corte, V. Locatelli, A. E. Rigamonti, A. Torsello, E. Bresciani, I. Bulgarelli, R. Rizzi, F. R. D’Amato, C. Severini, G. Mignogna, A. Giorgi, M. E. Schininà, G. Elia, C. Brancia, G. -L. Ferri, R. Conti, B. Ciani, T. Pascucci and E. E. Muller, for experimental and theoretical support to the realization of the research described in the review. Supported by FIRB RBNE01JKLF_004 to Anna Moles; FIRB RBNE01JKLF_006, FIRB RBNE013XSJ_004 and IZS SA 002/02 to Roberta Possenti; and FIRS Neurobiotecnologie and Telethon E0830 to Andrea Levi.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alessandro Bartolomucci or Anna Moles.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bartolomucci, A., Possenti, R., Levi, A. et al. The role of the vgf gene and VGF-derived peptides in nutrition and metabolism. Genes Nutr 2, 169–180 (2007). https://doi.org/10.1007/s12263-007-0047-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12263-007-0047-0

Keywords

Navigation