Skip to main content
Log in

Kinetic and Thermodynamic Study of the Ultrasonic Acetone-pentane Fractional Precipitation of Paclitaxel from the Plant Cell Cultures of Taxus chinensis

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

In this study, the purification efficiency of paclitaxel was remarkably improved through ultrasonic acetone-pentane fractional precipitation. The time taken for precipitation was also shortened by a maximum of 192-fold (at 5°C, 180-250 W) with ultrasound as compared to that of the conventional method. The precipitation was completed within 30 min regardless of temperature (5-25°C), thereby improving the operating conditions (precipitation time and temperature) as compared to the conventional method. In addition, the rate constant in the fractional precipitation with ultrasound (80-250 W) was also increased by 8-to 13-fold (at 5°C) as compared to the conventional method. The standard enthalpy change and standard entropy change were negative, while the standard Gibbs free energy change was positive. These results indicate that the precipitation process was exothermic, irreversible, and non-spontaneous.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wani, M. C., H. L. Taylor, M. E. Wall, P. Coggon, and A. T. McPhail (1971) Plant antitumor agents. VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J. Am. Chem. Soc. 93: 2325–2327.

    Article  CAS  Google Scholar 

  2. Schiff, P. B., J. Fant, and S. B. Horwitz (1979) Promotion of microtubule assembly in vitro by taxol. Nature. 277: 655–667.

    Article  Google Scholar 

  3. Kim, J. H. (2006) Paclitaxel: recovery and purification in commercialization step. KSBB J. 21: 1–10.

    Google Scholar 

  4. Rao, K. V., J. B. Hanuman, C. Alvarez, M. Stoy, J. Juchum, R. M. Davies, and R. Baxley (1995) A new large-scale process for taxol and related taxanes from Taxus brevifolia. Pharm. Res. 12: 1003–1010.

    Article  CAS  Google Scholar 

  5. Baloglu, E. and D. G. I. Kingston (1999) A new semisynthesis of paclitaxel from baccatin III. J. Nat. Prod. 62: 1068–1071.

    Article  CAS  Google Scholar 

  6. Jo, Y. J. and J. H. Kim (2019) Effective diffusivity and mass transfer coefficient during the extraction of paclitaxel from Taxus chinensis using methanol. Biotechnol. Bioprocess Eng. 24: 818–823.

    Article  CAS  Google Scholar 

  7. Choi, H. K., J. S. Son, G. H. Na, S. S. Hong, Y. S. Park, and J. Y. Song (2002) Mass production of paclitaxel by plant cell culture. Korean J. Plant Biotechnol. 29: 59–62.

    Article  Google Scholar 

  8. Yoo, K. W. and J. H. Kim (2018) Kinetics and mechanism of ultrasound-assisted extraction of paclitaxel from Taxus chinensis. Biotechnol. Bioprocess Eng. 23: 532–540.

    Article  CAS  Google Scholar 

  9. Pyo, S. H., H. B. Park, B. K. Song, B. H. Han, and J. H. Kim (2004) A large-scale purification of paclitaxel from cell cultures of Taxus chinensis. Process Biochem. 39: 1985–1991.

    Article  CAS  Google Scholar 

  10. Jeon, K. Y. and J. H. Kim (2009) Improvement of fractional precipitation process for pre-purification of paclitaxel. Process Biochem. 44: 736–741.

    Article  CAS  Google Scholar 

  11. Lee, C. G. and J. H. Kim (2017) A kinetic and thermodynamic study of fractional precipitation of paclitaxel from Taxus chinensis. Process Biochem. 59: 216–222.

    Article  CAS  Google Scholar 

  12. Kang, I. S. and J. H. Kim (2012) Effect of reactor type on the purification efficiency of paclitaxel in the increased surface area fractional precipitation process. Sep. Purif. Technol. 99: 14–19.

    Article  CAS  Google Scholar 

  13. Kim, J. H., I. S. Kang, H. K. Choi, S. S. Hong, and H. S. Lee (2000) Fractional precipitation for paclitaxel pre-purification from plant cell cultures of Taxus chinensis. Biotechnol. Lett. 22: 1753–1756.

    Article  CAS  Google Scholar 

  14. Kim, J. H., I. S. Kang, H. K. Choi, S. S. Hong, and H. S. Lee (2002) A novel prepurification for paclitaxel from plant cell cultures. Process Biochem. 37: 679–682.

    Article  CAS  Google Scholar 

  15. Jeon, S. I., S. Mun, and J. H. Kim (2006) Optimal temperature control in fractional precipitation for paclitaxel pre-purification. Process Biochem. 41: 276–280.

    Article  CAS  Google Scholar 

  16. Sim, H. A. and J. H. Kim (2012) Evaluation of a high surface area acetone/pentane precipitation process for the purification of paclitaxel from plant cell cultures. Sep. Purif. Technol. 89: 112–116.

    Article  CAS  Google Scholar 

  17. Lee, J. Y. and J. H. Kim (2012) Decrease in the particle size of paclitaxel by increased surface area fractional precipitation. Korean J. Microbiol. Biotechnol. 40: 157–162.

    Article  CAS  Google Scholar 

  18. Lee, J. Y. and J. H. Kim (2012) Evaluation of the effect of crude extract purity and pure paclitaxel content on the increased surface area fractional precipitation process for the purification of paclitaxel. Process Biochem. 47: 2388–2397.

    Article  CAS  Google Scholar 

  19. Lee, C. G. and J. H. Kim (2014) Improved fractional precipitation method for purification of paclitaxel. Process Biochem. 49: 1370–1376.

    Article  CAS  Google Scholar 

  20. Seo, H. W. and J. H. Kim (2019) Ultrasound-assisted fractional precipitation of paclitaxel from Taxus chinensis cell cultures. Process Biochem. 87: 238–243.

    Article  CAS  Google Scholar 

  21. Davies, L. A., A. Dargue, J. R. Dean, and M. E. Deary (2015) Use of 24 kHz ultrasound to improve sulfate precipitation from wastewater. Ultrason. Sonochem. 23: 424–431.

    Article  CAS  Google Scholar 

  22. Jordens, J., N. D. Coker, B. Gielen, T. Van Gerven, and L. Braeken (2015) Ultrasound precipitation of manganese carbonate: The effect of power and frequency on particle properties. Ultrason. Sonochem. 26: 64–72.

    Article  CAS  Google Scholar 

  23. Castillo-Peinado, L. S. and M. D. Luque de Castro (2016) The role of ultrasound in pharmaceutical production: sonocrystallization. J. Pharm. Pharmacol. 68: 1249–1267.

    Article  CAS  Google Scholar 

  24. Kang, H. J. and J. H. Kim (2019) Removal of residual chloroform from amorphous paclitaxel pretreated by alcohol. Korean J. Chem. Eng. 36: 1965–1970.

    Article  CAS  Google Scholar 

  25. Pyo, S. H., M. S. Kim, J. S. Cho, B. K. Song, B. H. Han, and H. J. Choi (2005) Efficient purification and morphology characterization of paclitaxel from cell cultures of Taxus chinensis. J. Chem. Technol. Biotechnol. 79: 1162–1168.

    Article  Google Scholar 

  26. Kim, J. H. (2020) Comparison of conventional solvent extraction, microwave-assisted extraction, and ultrasound-assisted extraction methods for paclitaxel recovery from biomass. Korean Chem. Eng. Res. 58: 273–279.

    CAS  Google Scholar 

  27. Park, J. N. and J. H. Kim (2017) Kinetic and thermodynamic characteristics of fractional precipitation of (+)-dihydromyricetin. Process Biochem. 53: 224–231.

    Article  CAS  Google Scholar 

  28. Petrou, A. L. and A. Terzidaki (2014) Calcium carbonate and calcium sulfate precipitation, crystallization and dissolution: Evidence for the activated steps and the mechanisms from the enthalpy and entropy of activation values. Chem. Geol. 381: 144–153.

    Article  CAS  Google Scholar 

  29. Jang, W. S. and J. H. Kim (2019) Characteristics and mechanism of microwave-assisted drying of amorphous paclitaxel for removal of residual solvent. Biotechnol. Bioprocess Eng. 24: 529–535.

    Article  CAS  Google Scholar 

  30. Wohlgemuth, K., A. Kordylla, F. Ruether, and G. Schembecker (2009) Experimental study of the effect of bubbles on nucleation during batch cooling crystallization. Chem. Eng. Sci. 64: 4155–4163.

    Article  CAS  Google Scholar 

  31. Wohlgemuth, K., F. Ruether, and G. Schembecker (2010) Sonocrystallization and crystallization with gassing of adipic acid. Chem. Eng. Sci. 65: 1016–1027.

    Article  CAS  Google Scholar 

  32. Kang, H. J. and J. H. Kim (2020) Cavitation bubble- and gas bubble-induced fractional precipitation of paclitaxel from Taxus chinensis. Process Biochem. 99: 316–323.

    Article  CAS  Google Scholar 

  33. Niladevi, K. N., R. K. Sukumaran, N. Jacob, G. S. Anisha, and P. Prema (2009) Optimization of laccase production from a novel strain-Streptomyces psammoticus using response surface methodology. Microbiol. Res. 164: 105–113.

    Article  CAS  Google Scholar 

  34. Saha, P. and S. Chowdhury (2011) Insight into adsorption thermodynamics. pp. 349–364. In: M. Tadashi (ed.). Thermodynamics. InTech, Rijeka, Croatia.

    Google Scholar 

  35. Kang, S. S. and J. H. Kim (2020) Kinetics, mechanism, and thermodynamics studies of vacuum drying of biomass from Taxus chinensis cell cultures. Biotechnol. Bioprocess Eng. 25: 336–343.

    Article  CAS  Google Scholar 

  36. Kang, H. J. and J. H. Kim (2019) Adsorption kinetics, mechanism, isotherm, and thermodynamic analysis of paclitaxel from extracts of Taxus chinensis cell cultures onto Sylopute. Biotechnol. Bioprocess Eng. 24: 513–521.

    Article  CAS  Google Scholar 

  37. Yoon, T. H. and J. H. Kim (2020) Development of drying process for removal of residual solvent from crystalline vancomycin and kinetic and thermodynamic analysis thereof. Biotechnol. Bioprocess Eng. 25: 777–786.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (NRF-2021R1A2C1003186).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Hyun Kim.

Ethics declarations

The authors declare no conflict of interest.

Neither ethical approval nor informed consent was required for this study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Min, HS., Kim, JH. Kinetic and Thermodynamic Study of the Ultrasonic Acetone-pentane Fractional Precipitation of Paclitaxel from the Plant Cell Cultures of Taxus chinensis. Biotechnol Bioproc E 26, 660–668 (2021). https://doi.org/10.1007/s12257-020-0345-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-020-0345-6

Keywords

Navigation