Skip to main content
Log in

Directed Molecular Engineering of Mig6 Peptide Selectivity between Proto-oncogene ErbB Family Receptor Tyrosine Kinases

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The ErbB signaling pathway plays important roles in normal physiology and cancer, which consists of four proto-oncogene receptor tyrosine kinases ErbB1/EGFR ErbB2/Her2, ErbB3/Her3, and ErbB4/Her4. Selective targeting of different ErbB kinases would result in distinct therapeutic effects, but traditional small-molecule inhibitors generally exhibit a strong cross-reactivity over these kinases due to the very high conservation in kinase’s active site. Instead of developing small-molecule drugs to selectively target the conserved active site of ErbB kinases, we herein attempt to design peptide agents for selectively disrupting the dimerization event of these kinases at their asymmetric dimer interfaces that have a relatively low homology. Three hotspot peptides S1P1, S1P2, and S1P3 are split from the functional segment 1 (Seg1) of mitogen-inducible gene 6 (Mig6), a natural EGFR-inhibitory protein that has been observed to inactivate the kinase by disrupting its dimerization. We demonstrate that the Mig6 peptides not only inhibit EGFR but also bind Her2, Her3, and Her4, although the peptide affinities to the four ErbB kinases are different considerably, exhibiting a typical selectivity. The S1P2 peptide locates in the core binding region of Mig6 Seg1 and contributes significantly to the segment interaction with kinases. An iteration algorithm is employed to guide the directed molecular engineering of S1P2 peptide selectivity towards each of the four kinases. Hundreds of parallel evolution running yield a series of peptide candidates with potential selectivity, which are then substantiated by fluorescence-based assays. The designed EGFR-selective peptide S1P2-p1EGFR is determined to have a moderate affinity to EGFR (Kd = 56 µM) and a high selectivity for EGFR over Her2, Her3, and H4 (FEGFR = 10.1-fold), which is improved considerably relative to wild-type S1P2 peptide (FEGFR = 2.7-fold). Structural examination observes different noncovalent interaction modes at the complex interfaces of S1P2-p1EGFR with EGFR and other three kinases, revealing a molecular origin of the peptide selectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lemmon, M. A. and J. Schlessinger (2010) Cell signaling by receptor tyrosine kinases. Cell. 141: 1117–1134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wieduwilt, M. J. and M. M. Moasser (2008) The epidermal growth factor receptor family: biology driving targeted therapeutics. Cell. Mol. Life Sci. 65: 1566–1584.

    CAS  Google Scholar 

  3. Roskoski, R. (2014) The ErbB/HER family of protein-tyrosine kinases and cancer. Pharmacol. Res. 79: 34–74.

    Article  CAS  PubMed  Google Scholar 

  4. Walker, F., S. G. Orchard, R. N. Jorissen, N. E. Hall, H. H. Zhang, P. A. Hoyne, T. E. Adams, T. G. Johns, C. Ward, T. P. J. Garrett, H. J. Zhu, M. Nerrie, A. M. Scott, E. C. Nice, and A. W. Burgess (2004) CR1/CR2 interactions modulate the functions of the cell surface epidermal growth factor receptor. J. Biol. Chem. 279: 22387–22398.

    Article  CAS  PubMed  Google Scholar 

  5. Singh, D., B. K. Attri, R. K. Gill, and J. Bariwal (2016) Review on EGFR inhibitors: critical updates. Mini. Rev. Med. Chem. 16: 1134–1166.

    Article  CAS  PubMed  Google Scholar 

  6. Dawson, J. P., M. B. Berger, C. C. Lin, J. Schlessinger, M. A. Lemmon, and K. M. Ferguson (2005) Epidermal growth factor receptor dimerization and activation require ligand-induced conformational changes in the dimer interface. Mol. Cell. Biol. 25: 7734–7742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hackel, P. O., M. Gishizky, and A. Ullrich (2001) Mig-6 is a negative regulator of the epidermal growth factor receptor signal. Biol. Chem. 382: 1649–1662.

    Article  CAS  PubMed  Google Scholar 

  8. Zhang, X., K. A. Pickin, R. Bose, N. Jura, P. A. Cole, and J. Kuriyan (2007) Inhibition of the EGF receptor by binding of MIG6 to an activating kinase domain interface. Nature. 450: 741–744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ferby, I., M. Reschke, O. Kudlacek, P. Knyazev, G. Pantè, K. Amann, W. Sommergruber, N. Kraut, A. Ullrich, R. Fässler, and R. Klein (2006) Mig6 is a negative regulator of EGF receptor-mediated skin morphogenesis and tumor formation. Nat. Med. 12: 568–573.

    Article  CAS  PubMed  Google Scholar 

  10. Wang, Z., L. L. Raines, R. M. Hooy, H. Roberson, D. J. Leahy, and P. A. Cole (2013) Tyrosine phosphorylation of mig6 reduces its inhibition of the epidermal growth factor receptor. ACS Chem. Biol. 8: 2372–2376.

    Article  CAS  PubMed  Google Scholar 

  11. Yu, X. D., R. Yang, and C. J. Leng (2016) Truncation, modification, and optimization of MIG6(segment 2) peptide to target lung cancer-related EGFR. Comput. Biol. Chem. 61: 251–257.

    Article  CAS  PubMed  Google Scholar 

  12. Li, N. and M. Wei (2017) Conversion of MIG6 peptide from the nonbinder to binder of lung cancer-related EGFR by phosphorylation and cyclization. Artif. Cells Nanomed. Biotechnol. 45: 1023–1028.

    Article  CAS  PubMed  Google Scholar 

  13. Wang, H., C. Guo, D. Ren, T. Xu, Y. Cao, W. Xiao, and W. Jiao (2017) Let it bind: cyclization of Mig-6 segment 2 to target EGFR signaling in lung cancer. Med. Chem. Res. 26: 1747–1752.

    Article  Google Scholar 

  14. Yu, X. D., A. F. Guo, G. H. Zheng, X. W. Yang, and P. C. Shi (2016) Design and optimization of peptide ligands to target breast cancer-positive HER2 by grafting and truncation of MIG6 peptide. Int. J. Pept. Res. Ther. 22: 229–236.

    Article  CAS  Google Scholar 

  15. Zhuo, Z. H., Y. Z. Sun, P. N. Jin, F. Y. Li, Y. L. Zhang, and H. L. Wang (2016) Selective targeting of MAPK family kinases JNK over p38 by rationally designed peptides as potential therapeutics for neurological disorders and epilepsy. Mol. Biosyst. 12: 2532–2540.

    Article  CAS  PubMed  Google Scholar 

  16. Gu, Z., T. Yan, and F. Yan (2020) Rational design and improvement of the dimerization-disrupting peptide selectivity between ROCK-I and ROCK-II kinase isoforms in cerebrovascular diseases. J. Mol. Recognit. 33: e2835.

    Article  CAS  PubMed  Google Scholar 

  17. Subrizi, A., E. Tuominen, A. Bunker, T. Róg, M. Antopolsky, and A. Urtti (2012) Tat(48–60) peptide amino acid sequence is not unique in its cell penetrating properties and cell-surface glycosaminoglycans inhibit its cellular uptake. J. Control Release. 158: 277–285.

    Article  CAS  PubMed  Google Scholar 

  18. Park, E., N. Kim, S. B. Ficarro, Y. Zhang, B. I. Lee, A. Cho, K. Kim, A. K. J. Park, W. Y. Park, B. Murray, M. Meyerson, R. Beroukhim, J. A. Marto, J. Cho, and M. J. Eck (2015) Structure and mechanism of activity-based inhibition of the EGF receptor by Mig6. Nat. Struct. Mol. Biol. 22: 703–711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Berman, H. M., J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N. Shindyalov, and P. E. Bourne (2000) The protein data bank. Nucleic Acids Res. 28: 235–242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhou, P., S. Hou, Z. Bai, Z. Li, H. Wang, Z. Chen, and Y. Meng (2018) Disrupting the intramolecular interaction between proto-oncogene c-Src SH3 domain and its self-binding peptide PPII with rationally designed peptide ligands. Artif. Cells Nanomed. Biotechnol. 46: 1122–1131.

    Article  CAS  PubMed  Google Scholar 

  21. Guex, N. and M. C. Peitsch (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis. 18: 2714–2723.

    Article  CAS  PubMed  Google Scholar 

  22. Krivov, G. G., M. V. Shapovalov, and R. L. Dunbrack Jr (2009) Improved prediction of protein side-chain conformations with SCWRL4. Proteins. 77: 778–795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ko, J., H. Park, L. Heo, and C. Seok (2012) GalaxyWEB server for protein structure prediction and refinement. Nucleic Acids Res. 40: W294–W297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gordon, J. C., J. B. Myers, T. Folta, V. Shoja, L. S. Heath, and A. Onufriev (2005) H++: a server for estimating pKas and adding missing hydrogens to macromolecules. Nucleic Acids Res. 33: W368–W371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Maier, J. A., C. Martinez, K. Kasavajhala, L. Wickstrom, K. E. Hauser, and C. Simmerling (2015) ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J. Chem. Theory Comput. 11: 3696–3713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yang, C., S. Zhang, P. He, C. Wang, J. Huang, and P. Zhou (2015) Self-binding peptides: folding or binding. J. Chem. Inf. Model. 55: 329–342.

    Article  CAS  PubMed  Google Scholar 

  27. Yang, C., S. Zhang, Z. Bai, S. Hou, D. Wu, J. Huang, and P. Zhou (2016) A two-step binding mechanism for the self-binding peptide recognition of target domains. Mol. Biosyst. 12: 1201–1213.

    Article  CAS  PubMed  Google Scholar 

  28. Ndagi, U., N. N. Mhlongo, and M. E. Soliman (2018) Emergence of a promising lead compound in the treatment of triple negative breast cancer: an insight into conformational features and ligand binding landscape of c-Src protein with UM-164. Appl. Biochem. Biotechnol. 185: 655–675.

    Article  CAS  PubMed  Google Scholar 

  29. Yang, C., C. Wang, S. Zhang, J. Huang, and P. Zhou (2015) Structural and energetic insights into the intermolecular interaction among human leukocyte antigens, clinical hypersensitive drugs and antigenic peptides. Mol. Simul. 41: 741–751.

    Article  CAS  Google Scholar 

  30. Zhou, P., F. Yan, Q. Miao, Z. Chen, and H. Wang (2021) Why the first self-binding peptide of human c-Src kinase does not contain class II motif but can bind to its cognate Src homology 3 domain in class II mode? J. Biomol. Struct. Dyn. 39: 310–318.

    Article  CAS  PubMed  Google Scholar 

  31. Berendsen, H. J. C., J. P. M. Postma, W. F. Van Gunsteren, A. Dinola, and J. R. Haak (1984) Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81: 3684.

    Article  CAS  Google Scholar 

  32. Gonnet, P (2007) P-SHAKE: a quadratically convergent SHAKE in O(n2). J. Comput. Phys. 220: 740–750.

    Article  Google Scholar 

  33. Salomon-Ferrer, R., A. W. Götz, D. Poole, S. Le Grand, and R. C. Walker (2013) Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. Explicit solvent particle mesh Ewald. J. Chem. Theory Comput. 9: 3878–3888.

    Article  CAS  Google Scholar 

  34. Le Grand, S., A. W. Götz, and R. C. Walker (2013) SPFP: Speed without compromise—a mixed precision model for GPU accelerated molecular dynamics simulations. Comput. Phys. Commun. 184: 374–380.

    Article  CAS  Google Scholar 

  35. Genheden, S. and U. Ryde (2015) The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert. Opin. Drug Discov. 10: 449–461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bai, Z., S. Hou, S. Zhang, Z. Li, and P. Zhou (2017) Targeting self-binding peptides as a novel strategy to regulate protein activity and function: a case study on the proto-oncogene tyrosine protein kinase c-Src. J. Chem. Inf. Model. 57: 835–845.

    Article  CAS  PubMed  Google Scholar 

  37. Weng, G., E. Wang, F. Chen, H. Sun, Z. Wang, T. Hou (2019) Assessing the performance of MM/PBSA and MM/GBSA methods. 9. Prediction reliability of binding affinities and binding poses for protein-peptide complexes. Phys. Chem. Chem. Phys. 21: 10135–10145.

    Article  CAS  PubMed  Google Scholar 

  38. Li, Z., F. Yan, Q. Miao, Y. Meng, L. Wen, Q. Jiang, and P. Zhou (2019) Self-binding peptides: binding-upon-folding versus folding-upon-binding. J. Theor. Biol. 469: 25–34.

    Article  CAS  PubMed  Google Scholar 

  39. Bahar, I., T. R. Lezon, A. Bakan, and I. H. Shrivastava (2010) Normal mode analysis of biomolecular structures: functional mechanisms of membrane proteins. Chem. Rev. 110: 1463–1497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Han, K. Q., G. Wu, and F. Lv (2013) Development of QSAR-improved statistical potential for the structure-based analysis of protein-peptide binding affinities. Mol. Inform. 32: 783–792.

    Article  CAS  PubMed  Google Scholar 

  41. Li, Z., Q. Miao, F. Yan, Y. Meng, and P. Zhou (2019) Machine learning in quantitative protein-peptide affinity prediction: implications for therapeutic peptide design. Curr. Drug Metab. 20: 170–176.

    Article  CAS  PubMed  Google Scholar 

  42. Kortemme, T., D. E. Kim, and D. Baker (2004) Computational alanine scanning of protein-protein interfaces. Sci. STKE. 2004: pl2.

    Article  PubMed  Google Scholar 

  43. Zhou, K., J. Lu, X. Yin, H. Xu, L. Li, and B. Ma (2019) Structure-based derivation and intramolecular cyclization of peptide inhibitors from PD-1/PD-L1 complex interface as immune checkpoint blockade for breast cancer immunotherapy. Biophys. Chem. 253: 106213.

    Article  CAS  PubMed  Google Scholar 

  44. Zhu, Z., C. Zhang, and W. Song (2017) Rational derivation, extension, and cyclization of self-inhibitory peptides to target TGF-β/BMP signaling in ONFH. Amino Acids. 49: 283–290.

    Article  CAS  PubMed  Google Scholar 

  45. Song, W., K. Wang, W. Wang, P. Yang, and X. Dang (2019) Grafting, stripping and stapling of helical peptides from the dimerization interface of ONFH-related bone morphogenetic protein-2. Protein J. 38: 12–22.

    Article  CAS  PubMed  Google Scholar 

  46. Deng, Y. and J. Li (2017) Rational optimization of tumor suppressor-derived peptide inhibitor selectivity between oncogene tyrosine kinases ErbB1 and ErbB2. Arch Pharm Chem Life Sci. 2017: 1700181.

    Article  Google Scholar 

  47. Zhou, P., Q. Miao, F. Yan, Z. Li, Q. Jiang, L. Wen, and Y. Meng (2019) Is protein context responsible for peptide-mediated interactions? Mol. Omics. 15: 280–295.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

All the authors declare that there are no conflicts of interest. The authors declare no conflict of interest.

Neither ethical approval nor informed consent was required for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuai Wang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiao, Z., Wang, S. Directed Molecular Engineering of Mig6 Peptide Selectivity between Proto-oncogene ErbB Family Receptor Tyrosine Kinases. Biotechnol Bioproc E 26, 277–285 (2021). https://doi.org/10.1007/s12257-020-0102-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-020-0102-x

Keywords

Navigation