Skip to main content
Log in

Recent Advances in Systems Metabolic Engineering Strategies for the Production of Biopolymers

  • Review Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Biopolymers consisting of at least one monomer, which are produced from renewable carbon sources, are being highly sought out since ubiquitous plastics are mainly produced from petrochemical processes causing severe environmental pollution. Therefore, the development of microbial cell factories, which can efficiently synthesize diverse types of monomers and polymers, is also becoming increasingly important. The applicability of traditional metabolic engineering strategies has extended with the combination of systems biology, synthetic biology, and evolutionary engineering in a systemic and versatile manner, and are collectively termed as systems metabolic engineering. Accordingly, recent advances in biotechnology have paved the way for enabling the production of an increasing number of monomers and polymers by providing several tools and strategies associated with systems metabolic engineering. In this review, we have focused on the substantial efforts made on the development of different approaches of systems metabolic engineering, particularly based on synthetic biology and evolutionary engineering, for the efficient production of monomers and polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vroman, I. and L. Tighzert (2009) Biodegradable polymers. Materials. 2: 307–344.

    Article  CAS  PubMed Central  Google Scholar 

  2. Lee, J. W., H. U. Kim, S. Choi, J. Yi, and S. Y. Lee (2011) Microbial production of building block chemicals and polymers. Curr. Opin. Biotechnol. 22: 758–767.

    Article  CAS  PubMed  Google Scholar 

  3. Chung, H., J. E. Yang, J. Y. Ha, T. U. Chae, J. H. Shin, M. Gustavsson, and S. Y. Lee (2015) Bio-based production of monomers and polymers by metabolically engineered microorganisms. Curr. Opin. Biotechnol. 36: 73–84.

    Article  CAS  PubMed  Google Scholar 

  4. Lee, J. W., T. Y. Kim, Y. S. Jang, S. Choi, and S. Y. Lee (2011) Systems metabolic engineering for chemicals and materials. Trends Biotechnol. 29: 370–378.

    Article  CAS  PubMed  Google Scholar 

  5. Rhie, M. N., H. T. Kim, S. Y. Jo, L. L. Chu, K. A. Baritugo, M. G. Baylon, J. Lee, J. G. Na, L. H. Kim, T. W. Kim, C. Park, S. H. Hong, J. C. Joo, and S. J. Park (2019) Recent advances in the metabolic engineering of Klebsiella pneumoniae: a potential platform microorganism for biorefineries. Biotechnol. Bioprocess Eng. 24: 48–64.

    Article  CAS  Google Scholar 

  6. Sohn, Y. J., H. T. Kim, K. A. Baritugo, H. M. Song, M. H. Ryu, K. H. Kang, S. Y. Jo, H. Kim, Y. J. Kim, J. Choi, S. K. Park, J. C. Joo, and S. J. Park (2020) Biosynthesis of polyhydroxyalkanoates from sucrose by metabolically engineered Escherichia coli strains. Int. J. Biol. Macromol. 149: 593–599.

    Article  CAS  PubMed  Google Scholar 

  7. Pang, B., L. E. Valencia, J. Wang, Y. Wan, R. Lal, A. Zargar, and J. D. Keasling (2019) Technical advances to accelerate modular type I polyketide synthase engineering towards a retrobiosynthetic platform. Biotechnol. Bioprocess Eng. 24: 413–423.

    Article  CAS  Google Scholar 

  8. Lee, J. W., D. Na, J. M. Park, J. Lee, S. Choi, and S. Y. Lee (2012) Systems metabolic engineering of microorganisms for natural and non-natural chemicals. Nat. Chem. Biol. 8: 536–546.

    Article  CAS  PubMed  Google Scholar 

  9. Choi, S. Y., M. N. Rhie, H. T. Kim, J. C. Joo, I. J. Cho, J. Son, S. Y. Jo, Y. J. Sohn, K. A. Baritugo, J. Pyo, Y. Lee, S. Y. Lee, and S. J. Park (2020) Metabolic engineering for the synthesis of polyesters: A 100-year journey from polyhydroxyalkanoates to non-natural microbial polyesters. Metab. Eng. 58: 47–81.

    Article  CAS  PubMed  Google Scholar 

  10. Baritugo, K. A., H. T. Kim, Y. David, J. I. Choi, S. H. Hong, K. J. Jeong, J. H. Choi, J. C. Joo, and S. J. Park (2018) Metabolic engineering of Corynebacterium glutamicum for fermentative production of chemicals in biorefinery. Appl. Microbiol. Biotechnol. 102: 3915–3937.

    Article  CAS  PubMed  Google Scholar 

  11. Yu, T., Y. Dabirian, Q. Liu, V. Siewers, and J. Nielsen (2019) Strategies and challenges for metabolic rewiring. Curr. Opin. Syst. Biol. 15: 30–38.

    Article  Google Scholar 

  12. Lee, S. Y., H. U. Kim, T. U. Chae, J. S. Cho, J. W. Kim, J. H. Shin, D. I. Kim, Y. S. Ko, W. D. Jang, and Y. S. Jang (2019) A comprehensive metabolic map for production of bio-based chemicals. Nat. Catal. 2: 18–33.

    Article  CAS  Google Scholar 

  13. Jung, Y. K., T. Y. Kim, S. J. Park, and S. Y. Lee (2010) Metabolic engineering of Escherichia coli for the production of polylactic acid and its copolymers. Biotechnol. Bioeng. 105: 161–171.

    Article  CAS  PubMed  Google Scholar 

  14. Yang, T. H., T. W. Kim, H. O. Kang, S. H. Lee, E. J. Lee, S. C. Lim, S. O. Oh, A. J. Song, S. J. Park, and S. Y. Lee (2010) Biosynthesis of polylactic acid and its copolymers using evolved propionate CoA transferase and PHA synthase. Biotechnol. Bioeng. 105: 150–160.

    Article  CAS  PubMed  Google Scholar 

  15. Choi, S. Y., S. J. Park, W. J. Kim, J. E. Yang, H. Lee, J. Shin, and S. Y. Lee (2016) One-step fermentative production of poly(lactate-co-glycolate) from carbohydrates in Escherichia coli. Nat. Biotechnol. 34: 435–440.

    Article  CAS  PubMed  Google Scholar 

  16. Yang, J. E., S. J. Park, W. J. Kim, H. J. Kim, B. J. Kim, H. Lee, J. Shin, and S. Y. Lee (2018) One-step fermentative production of aromatic polyesters from glucose by metabolically engineered Escherichia coli strains. Nat. Comm. 9: 79.

    Article  CAS  Google Scholar 

  17. Chae, T. U., Y. S. Ko, K. S. Hwang, and S. Y. Lee (2017) Metabolic engineering of Escherichia coli for the production of four-, five- and six-carbon lactams. Metab. Eng. 41: 82–91.

    Article  CAS  PubMed  Google Scholar 

  18. Park, S. J., E. Y. Kim, W. Noh, H. M. Park, Y. H. Oh, S. H. Lee, B. K. Song, J. Jegal, and S. Y. Lee (2013) Metabolic engineering of Escherichia coli for the production of 5-aminovalerate and glutarate as C5 platform chemicals. Metab. Eng. 16: 42–47.

    Article  CAS  PubMed  Google Scholar 

  19. Adkins, J., J. Jordan, and D. R. Nielsen (2013) Engineering Escherichia coli for renewable production of the 5-carbon polyamide building-blocks 5-aminovalerate and glutarate. Biotechnol. Bioeng. 110: 1726–1734.

    Article  CAS  PubMed  Google Scholar 

  20. Clomburg, J. M., M. D. Blankschien, J. E. Vick, A. Chou, S. Kim, and R. Gonzalez (2015) Integrated engineering of β-oxidation reversal and co-oxidation pathways for the synthesis of: medium chain ω-functionalized carboxylic acids. Metab. Eng. 28: 202–212.

    Article  CAS  PubMed  Google Scholar 

  21. Kim, H. T., K. A. Baritugo, Y. H. Oh, S. M. Hyun, T. U. Khang, K. H. Kang, S. H. Jung, B. K. Song, K. Park, I. K. Kim, M. O. Lee, Y. Kam, Y. T. Hwang, S. J. Park, and J. C. Joo (2018) Metabolic engineering of Corynebacterium glutamicum for the high-level production of cadaverine that can be used for the synthesis of biopolyamide 510. ACS Sustain Chem. Eng. 6: 5296–5305.

    Article  CAS  Google Scholar 

  22. Kim, H. T., K. A. Baritugo, S. M. Hyun, T. U. Khang, Y. J. Sohn, K. H. Kang, S. Y. Jo, B. K. Song, K. Park, I. K. Kim, Y. T. Hwang, S. Y. Lee, S. J. Park, and J. C. Joo (2020) Development of metabolically engineered Corynebacterium glutamicum for enhanced production of cadaverine and its use for the synthesis of bio-polyamide 510. ACS Sustain. Chem. Eng. 8: 129–138.

    Article  CAS  Google Scholar 

  23. T. R. Choi, J. M. Jeon, S. K. Bhatia, R. Gurav, Y. H. Han, Y. L. Park, J. Y. Park, H. S. Song, H. Y. Park, J. J. Yoon, S. O. Seo, and Y. H. Yang (2020) Production of low molecular weight P(3HB-co-3HV) by butyrateacetoacetate CoA-transferase (cftAB) in Escherichia coli. Biotechnol. Bioprocess Eng. 25: 279–286.

    Article  CAS  Google Scholar 

  24. Choi, J. W., S. S. Yim, S. H. Lee, T. J. Kang, S. J. Park, and K. J. Jeong (2015) Enhanced production of gamma-aminobutyrate (GABA) in recombinant Corynebacterium glutamicum by expressing glutamate decarboxylase active in expanded pH range. Microb. Cell Fact. 14: 21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Chae, T. U., J. H. Ahn, Y. S. Ko, J. W. Kim, J. A. Lee, E. H. Lee, and S. Y. Lee (2020) Metabolic engineering for the production of dicarboxylic acids and diamines. Metab. Eng. 58: 2–16.

    Article  CAS  PubMed  Google Scholar 

  26. Zhang, X., K. Jantama, J. C. Moore, L. R. Jarboe, K. T. Shanmugam, and L. O. Ingrama (2009) Metabolic evolution of energy-conserving pathways for succinate production in Escherichia coli. Proc. Natl. Acad. Sci. USA. 106: 20180–20185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang, J., R. Jain, X. Shen, X. Sun, M. Cheng, J. C. Liao, Q. Yuan, and Y. Yan (2017) Rational engineering of diol dehydratase enables 1,4-butanediol biosynthesis from xylose. Metab. Eng. 40: 148–156.

    Article  CAS  PubMed  Google Scholar 

  28. Liu, H. and T. Lu (2015) Autonomous production of 1,4-butanediol via a de novo biosynthesis pathway in engineered Escherichia coli. Metab. Eng. 29: 135–141.

    Article  CAS  PubMed  Google Scholar 

  29. Deng, Y. and Y. Mao (2015) Production of adipic acid by the native-occurring pathway in Thermobifida fusca B6. J. Appl. Microbiol. 119: 1057–1063.

    Article  CAS  PubMed  Google Scholar 

  30. Luo, Z. W. and S. Y. Lee (2017) Biotransformation of p-xylene into terephthalic acid by engineered Escherichia coli. Nat. Commun. 8: 15689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kim, H. T., T. U. Khang, K. A. Baritugo, S. M. Hyun, K. H. Kang, S. H. Jung, B. K. Song, K. Park, M. K. Oh, G. B. Kim, H. U. Kim, S. Y. Lee, S. J. Park, and J. C. Joo (2019) Metabolic engineering of Corynebacterium glutamicum for the production of glutaric acid, a C5 dicarboxylic acid platform chemical. Metab. Eng. 51: 99–109.

    Article  CAS  PubMed  Google Scholar 

  32. Wang, Y., M. Xian, X. Feng, M. Liu, and G. Zhao (2018) Biosynthesis of ethylene glycol from d-xylose in recombinant Escherichia coli. Bioengineered. 9: 233–241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chae, T. U., S. Y. Choi, J. W. Kim, Y. S. Ko, and S. Y. Lee (2017) Recent advances in systems metabolic engineering tools and strategies. Curr. Opin. Biotechnol. 47: 67–82.

    Article  CAS  PubMed  Google Scholar 

  34. Qian, Z. G., X. X. Xia, and S. Y. Lee (2009) Metabolic engineering of Escherichia coli for the production of putrescine: a four carbon diamine. Biotechnol. Bioeng. 104: 651–662.

    CAS  PubMed  Google Scholar 

  35. Schneider, J., D. Eberhardt, and V. F. Wendisch (2012) Improving putrescine production by Corynebacterium glutamicum by fine-tuning ornithine transcarbamoylase activity using a plasmid addiction system. Appl. Microbiol. Biotechnol. 95: 169–178.

    Article  CAS  PubMed  Google Scholar 

  36. Nguyen, A. Q. D., J. Schneider, and V. F. Wendisch (2015) Elimination of polyamine N-acetylation and regulatory engineering improved putrescine production by Corynebacterium glutamicum. J. Biotechnol. 201: 75–85.

    Article  CAS  PubMed  Google Scholar 

  37. Qian, Z. G., X. X. Xia, and S. Y. Lee (2011) Metabolic engineering of Escherichia coli for the production of cadaverine: a five carbon diamine. Biotechnol. Bioeng. 108: 93–103.

    Article  CAS  PubMed  Google Scholar 

  38. Kim, H. T., K. A. Baritugo, Y. H. Oh, K. H. Kang, Y. J. Jung, S. Jang, B. K. Song, I. K. Kim, M. O. Lee, Y. T. Hwang, K. Park, S. J. Park, and J. C. Joo (2019) High-level conversion of l-lysine into cadaverine by Escherichia coli whole cell biocatalyst expressing Hafnia alvei l-lysine decarboxylase. Polymers. 11: 1184.

    Article  CAS  PubMed Central  Google Scholar 

  39. Soma, Y., Y. Fujiwara, T. Nakagawa, K. Tsuruno, and T. Hanai (2017) Reconstruction of a metabolic regulatory network in Escherichia coli for purposeful switching from cell growth mode to production mode in direct GABA fermentation from glucose. Metab. Eng. 43: 54–63.

    Article  CAS  PubMed  Google Scholar 

  40. Park, S. H., G. B. Kim, H. U. Kim, S. J. Park, and J. I. Choi (2019) Enhanced production of poly-3-hydroxybutyrate (PHB) by expression of response regulator DR1558 in recombinant Escherichia coli. Int. J. Biol. Macromol. 131: 29–35.

    Article  CAS  PubMed  Google Scholar 

  41. Na, D., S. M. Yoo, H. Chung, H. Park, J. H. Park, and S. Y. Lee (2013) Metabolic engineering of Escherichia coli using synthetic small regulatory RNAs. Nat. Biotechnol. 31: 170–174.

    Article  CAS  PubMed  Google Scholar 

  42. Noh, M., S. M. Yoo, D. Yang, and S. Y. Lee (2019) Broad-spectrum gene repression using scaffold engineering of synthetic sRNAs. ACS Synth. Biol. 8: 1452–1461.

    Article  CAS  PubMed  Google Scholar 

  43. Chen, Y., X. Y. Chen, H. T. Du, X. Zhang, Y. M. Ma, J. C. Chen, J. W. Ye, X. R. Jiang, and G. Q. Chen (2019) Chromosome engineering of the TCA cycle in Halomonas bluephagenesis for production of copolymers of 3-hydroxybutyrate and 3-hydroxyvalerate (PHBV). Metab. Eng. 54: 69–82.

    Article  CAS  PubMed  Google Scholar 

  44. Wang, J., Y. Wu, X. Sun, Q. Yuan, and Y. Yan (2017) De novo biosynthesis of glutarate via α-keto acid carbon chain extension and decarboxylation pathway in Escherichia coli. ACS Synth. Biol. 6: 1922–1930.

    Article  PubMed  CAS  Google Scholar 

  45. Dueber, J. E., G. C. Wu, G. R. Malmirchegini, T. S. Moon, C. J. Petzold, A. V. Ullal, K. L. J. Prather, and J. D. Keasling (2009) Synthetic protein scaffolds provide modular control over metabolic flux. Nat. Biotechnol. 27: 753–759.

    Article  CAS  PubMed  Google Scholar 

  46. Pham, V. D., S. Somasundaram, S. H. Lee, S. J. Park, and S. H. Hong (2016) Efficient production of gamma-aminobutyric acid using Escherichia coli by co-localization of glutamate synthase, glutamate decarboxylase, and GABA transporter. J. Ind. Microbiol. Biotechnol. 43: 79–86.

    Article  CAS  Google Scholar 

  47. Pham, V. D., S. Somasundaram, S. H. Lee, S. J. Park, and S. H. Hong (2015) Engineering the intracellular metabolism of Escherichia coli to produce gamma-aminobutyric acid by co-localization of GABA shunt enzymes. Biotechnol. Lett. 38: 321–327.

    Article  PubMed  CAS  Google Scholar 

  48. Xia, T., E. Altman, and M. A. Eiteman (2015) Succinate production from xylose-glucose mixtures using a consortium of engineered Escherichia coli. Eng. Life Sci. 15: 65–72.

    Article  CAS  Google Scholar 

  49. Wang, J., X. Lu, H. Ying, W. Ma, S. Xu, X. Wang, K. Chen, and P. Ouyang (2018) A novel process for cadaverine bio-production using a consortium of two engineered Escherichia coli. Front. Microbiol. 9: 1312.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Jantama, K., M. J. Haupt, S. A. Svoronos, X. Zhang, J. C. Moore, K. T. Shanmugam, and L. O. Ingram (2008) Combining metabolic engineering and metabolic evolution to develop nonrecombinant strains of Escherichia coli C that produce succinate and malate. Biotechnol. Bioeng. 99: 1140–1153.

    Article  CAS  PubMed  Google Scholar 

  51. Li, Z., Y. P. Shen, X. L. Jiang, L. S. Feng, and J. Z. Liu (2018) Metabolic evolution and a comparative omics analysis of Corynebacterium glutamicum for putrescine production. J. Ind. Microbiol. Biotechnol. 45: 123–139.

    Article  CAS  PubMed  Google Scholar 

  52. Yang, X., H. Wang, C. Li, and C. S. K. Lin (2017) Restoring of glucose metabolism of engineered Yarrowia lipolytica for succinic acid production via a simple and efficient adaptive evolution strategy. J. Agric. Food Chem. 65: 4133–4139.

    Article  CAS  PubMed  Google Scholar 

  53. Chen, X. F., X. X. Xia, S. Y. Lee, and Z. G. Qian (2018) Engineering tunable biosensors for monitoring putrescine in Escherichia coli. Biotechnol. Bioeng. 115: 1014–1027.

    Article  CAS  PubMed  Google Scholar 

  54. Jang, S., S. Jang, D. K. Im, T. J. Kang, M. K. Oh, and G. Y. Jung (2019) Artificial caprolactam-specific riboswitch as an intracellular metabolite sensor. ACS Synth. Biol. 8: 1276–1283.

    Article  CAS  PubMed  Google Scholar 

  55. Noh, M., S. M. Yoo, W. J. Kim, and S. Y. Lee (2017) Gene expression knockdown by modulating synthetic small RNA expression in Escherichia coli. Cell Syst. 5: 418–426.

    Article  CAS  PubMed  Google Scholar 

  56. Nishida, K., T. Arazoe, N. Yachie, S. Banno, M. Kakimoto, M. Tabata, M. Mochizuki, A. Miyabe, M. Araki, K. Y. Hara, Z. Shimatani, and A. Kondo (2016) Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science. 353: aaf8729.

    Article  PubMed  CAS  Google Scholar 

  57. Cong, L., F. A. Ran, D. Cox, S. Lin, R. Barretto, N. Habib, P. D. Hsu, X. Wu, W. Jiang, L. A. Marraffini, and F. Zhang (2013) Multiplex genome engineering using CRISPR/Cas systems. Science. 339: 819–823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Choi, K. R. and S. Y. Lee (2016) CRISPR technologies for bacterial systems: current achievements and future directions. Biotechnol. Adv. 34: 1180–1209.

    Article  CAS  PubMed  Google Scholar 

  59. Cho, J. S., K. R. Choi, C. P. S. Prabowo, J. H. Shin, D. Yang, J. Jang, and S. Y. Lee (2017) CRISPR/Cas9-coupled recombineering for metabolic engineering of Corynebacterium glutamicum. Metab. Eng. 42: 157–167.

    Article  CAS  PubMed  Google Scholar 

  60. Jung, H. R., S. Y. Yang, Y. M. Moon, T. R. Choi, H. S. Song, S. K. Bhatia, R. Gurav, E. J. Kim, B. G. Kim, and Y. H. Yang (2019) Construction of efficient platform Escherichia coli strains for polyhydroxyalkanoate production by engineering branched pathway. Polymers. 11: 509.

    Article  CAS  PubMed Central  Google Scholar 

  61. Qin, Q., C. Ling, Y. Zhao, T. Yang, J. Yin, Y. Guo, and G. Q. Chen (2018) CRISPR/Cas9 editing genome of extremophile Halomonas spp. Metab. Eng. 47: 219–229.

    Article  CAS  PubMed  Google Scholar 

  62. Qi, L. S., M. H. Larson, L. A. Gilbert, J. A. Doudna, J. S. Weissman, A. P. Arkin, and W. A. Lim (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell. 152: 1173–1183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Li, Z. and J. Z. Liu (2017) Transcriptomic changes in response to putrescine production in metabolically engineered Corynebacterium glutamicum. Front. Microbiol. 8: 1987.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Lv, L., Y. L. Ren, J. C. Chen, Q. Wu, and G. Q. Chen (2015) Application of CRISPRi for prokaryotic metabolic engineering involving multiple genes, a case study: controllable P(3HB-co-4HB) biosynthesis. Metab. Eng. 29: 160–168.

    Article  CAS  PubMed  Google Scholar 

  65. Li, D., L. Lv, J. C. Chen, and G. Q. Chen (2017) Controlling microbial PHB synthesis via CRISPRi. Appl. Microbiol. Biotechnol. 101: 5861–5867.

    Article  CAS  PubMed  Google Scholar 

  66. Gardner, T. S., C. R. Cantor, and J. J. Collins (2000) Construction of a genetic toggle switch in Escherichia coli. Nature. 403: 339–342.

    Article  CAS  PubMed  Google Scholar 

  67. Bothfeld, W., G. Kapov, and K. E. Tyo (2017) A glucosesensing toggle switch for autonomous, high productivity genetic control. ACS Synth. Biol. 6: 1296–1304.

    Article  CAS  PubMed  Google Scholar 

  68. Shong, J. and C. H. Collins (2014) Quorum sensing-modulated AND-gate promoters control gene expression in response to a combination of endogenous and exogenous signals. ACS Synth. Biol. 3: 238–246.

    Article  CAS  PubMed  Google Scholar 

  69. Miller, M. B. and B. L. Bassler (2001) Quorum sensing in bacteria. Annu. Rev. Microbiol. 55: 165–199.

    Article  CAS  PubMed  Google Scholar 

  70. Bari, S. M. N., M. K. Roky, M. Mohiuddin, M. Kamruzzaman, J. J. Mekalanos, and S. M. Faruque (2013) Quorum-sensing autoinducers resuscitate dormant Vibrio cholerae in environmental water samples. Proc. Natl. Acad. Sci. USA. 110: 9926–9931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Keasling, J. D. (2012) Synthetic biology and the development of tools for metabolic engineering. Metab. Eng. 14: 189–195.

    Article  CAS  PubMed  Google Scholar 

  72. Lee, H., W. C. DeLoache, and J. E. Dueber (2012) Spatial organization of enzymes for metabolic engineering. Metab. Eng. 14: 242–251.

    Article  CAS  PubMed  Google Scholar 

  73. Le Vo, T. D., J. S. Ko, S. J. Park, S. H. Lee, and S. H. Hong (2013) Efficient gamma-aminobutyric acid bioconversion by employing synthetic complex between glutamate decarboxylase and glutamate/GABA antiporter in engineered Escherichia coli. J. Ind. Microbiol. Biotechnol. 40: 927–933.

    Article  PubMed  CAS  Google Scholar 

  74. Brenner, K., L. You, and F. H. Arnold (2008) Engineering microbial consortia: a new frontier in synthetic biology. Trends Biotechnol. 26: 483–489.

    Article  CAS  PubMed  Google Scholar 

  75. Johns, N. I., T. Blazejewski, A. L. Gomes, and H. H. Wang (2016) Principles for designing synthetic microbial communities. Curr. Opin. Microbiol. 31: 146–153.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Portnoy, V. A., D. Bezdan, and K. Zengler (2011) Adaptive laboratory evolution—harnessing the power of biology for metabolic engineering. Curr. Opin. Biotechnol. 22: 590–594.

    Article  CAS  PubMed  Google Scholar 

  77. Dragosits, M. and D. Mattanovich (2013) Adaptive laboratory evolution-principles and applications for biotechnology. Microb. Cell Fact. 12: 64.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Nguyen, L. T. and E. Y. Lee (2019) Biological conversion of methane to putrescine using genome-scale model-guided metabolic engineering of a methanotrophic bacterium Methylomicrobium alcaliphilum 20Z. Biotechnol. Biofuels. 12: 147.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Cirino, P. C., K. M. Mayer, and D. Umeno (2003) Generating mutant libraries using error-prone PCR. pp. 3–9. In: F. H. Arnold and G. Georgiou (eds.) Directed Evolution Library Creation. Humana Press, Totowa, NJ, USA.

    Chapter  Google Scholar 

  80. Hong, E. Y., S. G. Lee, B. J. Park, J. M. Lee, H. Yun, and B. G. Kim (2017) Simultaneously enhancing the stability and catalytic activity of multimeric lysine decarboxylase CadA by engineering interface regions for enzymatic production of cadaverine at high concentration of lysine. Biotechnol. J. 12: 1700278.

    Article  CAS  Google Scholar 

  81. Wang, C., K. Zhang, C. Zhongjun, H. Cai, W. Honggui, and P. Ouyang (2015) Directed evolution and mutagenesis of lysine decarboxylase from Hafnia alvei AS1.1009 to improve its activity toward efficient cadaverine production. Biotechnol. Bioprocess Eng. 20: 439–446.

    Article  CAS  Google Scholar 

  82. Shiue, E. and K. L. Prather (2014) Improving D-glucaric acid production from myo-inositol in E. coli by increasing MIOX stability and myo-inositol transport. Metab. Eng. 22: 22–31.

    Article  CAS  PubMed  Google Scholar 

  83. Taguchi, S., M. Yamada, K. Matsumoto, K. Tajima, Y. Satoh, M. Munekata, K. Ohno, K. Kohda, T. Shimamura, H. Kambe, and S. Obata (2008) A microbial factory for lactate-based polyesters using a lactate-polymerizing enzyme. Proc. Natl. Acad. Sci. USA. 105: 17323–17327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Takase, K., S. Taguchi, and Y. Doi (2003) Enhanced synthesis of poly(3-hydroxybutyrate) in recombinant Escherichia coli by means of error-prone PCR mutagenesis, saturation mutagenesis, and in vitro recombination of the type II polyhydroxyalkanoate synthase gene. J. Biochem. 133: 139–145.

    Article  CAS  PubMed  Google Scholar 

  85. Takase, K., K. Matsumoto, S. Taguchi, and Y. Doi (2004) Alteration of substrate chain-length specificity of type II synthase for polyhydroxyalkanoate biosynthesis by in vitro evolution: in vivo and in vitro enzyme assays. Biomacromolecules. 5: 480–485.

    Article  CAS  PubMed  Google Scholar 

  86. Matsumoto, K., E. Aoki, K. Takase, Y. Doi, and S. Taguchi (2006) In vivo and in vitro characterization of Ser477X mutations in polyhydroxyalkanoate (PHA) synthase 1 from Pseudomonas sp. 61–3: effects of beneficial mutations on enzymatic activity, substrate specificity, and molecular weight of PHA. Biomacromolecules. 7: 2436–2442.

    Article  CAS  PubMed  Google Scholar 

  87. Matsumoto, K., K. Takase, E. Aoki, Y. Doi, and S. Taguchi (2005) Synergistic effects of Glu130Asp substitution in the type II polyhydroxyalkanoate (PHA) synthase: enhancement of PHA production and alteration of polymer molecular weight. Biomacromolecules. 6: 99–104.

    Article  CAS  PubMed  Google Scholar 

  88. Matsusaki, H., S. Manji, K. Taguchi, M. Kato, T. Fukui, and Y. Doi (1998) Cloning and molecular analysis of the poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyalkanoate) biosynthesis genes in Pseudomonas sp. strain 61–3. J. Bacteriol. 180: 6459–6467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Tyo, K. E., H. Zhou, and G. N. Stephanopoulos (2006) High-throughput screen for poly-3-hydroxybutyrate in Escherichia coli and Synechocystis sp. strain PCC6803. Appl. Environ. Microbiol. 72: 3412–3417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Lee, J. H., S. H. Lee, S. S. Yim, K. H. Kang, S. Y. Lee, S. J. Park, and K. J. Jeong (2013) Quantified high-throughput screening of Escherichia coli producing poly(3-hydroxybutyrate) based on FACS. Appl. Biochem. Biotechnol. 170: 1767–1779.

    Article  CAS  PubMed  Google Scholar 

  91. Zhang, F. and J. Keasling (2011) Biosensors and their applications in microbial metabolic engineering. Trends Microbiol. 19: 323–329.

    Article  CAS  PubMed  Google Scholar 

  92. Zhang, J., M. K. Jensen, and J. D. Keasling (2015) Development of biosensors and their application in metabolic engineering. Curr. Opin. Chem. Biol. 28: 1–8.

    Article  PubMed  CAS  Google Scholar 

  93. Zhang, J., J. F. Barajas, M. Burdu, T. L. Ruegg, B. Dias, and J. D. Keasling (2017) Development of a transcription factor-based lactam biosensor. ACS Synth. Biol. 6: 439–445.

    Article  CAS  PubMed  Google Scholar 

  94. Yeom, S. J., M. Kim, K. K. Kwon, Y. Fu, E. Rha, S. H. Park, H. Lee, H. Kim, D. H. Lee, D. M. Kim, and S. G. Lee (2018) A synthetic microbial biosensor for high-throughput screening of lactam biocatalysts. Nat. Comm. 9: 5053.

    Article  CAS  Google Scholar 

  95. Seok, J. Y., J. Yang, S. J. Choi, H. G. Lim, U. J. Choi, K. J. Kim, S. Park, T. H. Yoo, and G. Y. Jung (2018) Directed evolution of the 3-hydroxypropionic acid production pathway by engineering aldehyde dehydrogenase using a synthetic selection device. Metab. Eng. 47: 113–120.

    Article  CAS  PubMed  Google Scholar 

  96. Jang, S., J. Yang, S. W. Seo, and G. Y. Jung (2015) Riboselector: riboswitch-based synthetic selection device to expedite evolution of metabolite-producing microorganisms. Methods Enzymology. 550: 341–362.

    Article  CAS  Google Scholar 

  97. Seo, S. W. and G. Y. Jung (2013) Synthetic regulatory RNAs as tools for engineering biological systems: Design and applications. Chem. Eng. Sci. 103: 36–41.

    Article  CAS  Google Scholar 

  98. Choe, D., J. H. Lee, M. Yoo, S. Hwang, B. H. Sung, S. Cho, B. Palsson, S. C. Kim, and B. K. Cho (2019) Adaptive laboratory evolution of a genome-reduced Escherichia coli. Nat. Comm. 10: 935.

    Article  CAS  Google Scholar 

  99. Kim, H. T., J. K. Kim, H. G. Cha, M. J. Kang, H. S. Lee, T. U. Khang, E. J. Yun, D. H. Lee, B. K. Song, S. J. Park, J. C. Joo, and K. H. Kim (2019) Biological valorization of poly(ethylene terephthalate) monomers for upcycling waste PET. ACS Sustain. Chem. Eng. 7: 19396–19406.

    Article  CAS  Google Scholar 

  100. Sohn, Y. J., H. T. Kim, K. A. Baritugo, S. Y. Jo, H. M. Song, S. Y. Park, S. K. Park, J. Pyo, H. G. Cha, H. Kim, J. G. Na, C. Park, J. I. Choi, J. C. Joo, and S. J. Park (2020) Recent advances in sustainable plastic upcycling and biopolymers. Biotechnol. J. 15: e1900489.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Bio & Medical Technology Development Program of the National Research Foundation (NRF) funded by the Korean government (MSIT) (NRF-2020M3A9I5037888), the Basic Science Research Program (NRF-2020R1F1A1070249), and the NRF grant funded by the MSIT (NRF-2020R1A5A1019631).

The authors declare no conflict of interest.

Neither ethical approval nor informed consent was required for this study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jeong Chan Joo or Si Jae Park.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sohn, Y.J., Kim, H.T., Jo, S.Y. et al. Recent Advances in Systems Metabolic Engineering Strategies for the Production of Biopolymers. Biotechnol Bioproc E 25, 848–861 (2020). https://doi.org/10.1007/s12257-019-0508-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-019-0508-5

Keywords

Navigation