Skip to main content
Log in

Tunicate Cellulose Nanocrystals as Stabilizers for PLGA-based Polymeric Nanoparticles

  • Research Paper
  • Nanobiotechnology
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Nanoparticles have different physical and chemical properties than those of micro-sized particles and are actively studied in the fields of electronics, biology, and material science. However, in case of most polymeric nanoparticles, maintaining and remaining in their colloid state for a long time is difficult due to self-aggregation. In this study, we examined the morphological, physical, and chemical properties of tunicate cellulose nanocrystals (tCNC) and also investigated the effect of tCNC on colloidal behaviors of poly(lactic-co-glycolic acid) (PLGA)-based nanoparticles. Fourier-transform infrared spectroscopy (FTIR) showed that tCNC do not have a chemical effect on PLGA-based nanoparticles. Dynamic light scattering (DLS) showed that tCNC helped the PLGA nanoparticles maintain their small sizes for a longer period in solution. tCNC were also confirmed to be non-cytotoxic to human dermal fibroblasts at concentrations below 0.5%. Based on these results, tCNC were found to be a stabilizer for PLGA-based nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  1. Nagavarma, B. V. N., H. K. Y. Hemant, Y. Ayaz, Y. S. Vasudha, and S. G. Shivakumar (2012) Different techniques for preparation of polymeric nanoparticles-a review. Asian J. Pharm. Clin. Res. 5: 16–23.

    CAS  Google Scholar 

  2. Müller, R. H., K. MaÈder, and K. Gohla (2000) Solid lipid nanoparticles (SLN) for controlled drug delivery-a review of the state of the art. Eur. J. Pharm. Biopharm. 50: 161–177.

    Article  PubMed  Google Scholar 

  3. Dickinson, E. (2009) Hydrocolloids as emulsifiers and emulsion stabilizers. Food Hydrocoll. 23: 1473–1482.

    Article  CAS  Google Scholar 

  4. Rescignano, N., E. Fortunati, E. Armentano, E. Hernandez, R. Mijangos, R. Pasquino, and R. M. Kennya (2015) Use of alginate, chitosan and cellulose nanocrystals as emulsion stabilizers in the synthesis of biodegradable polymeric nanoparticles. J. Colloid Interface Sci. 445: 31–39.

    Article  CAS  PubMed  Google Scholar 

  5. Danhier, F., E. Ansorena, E. M. Silva, M. Coco, M. Le Breton, and V. Préat (2012) PLGA-based nanoparticles: an overview of biomedical applications. J. Control Release. 161: 505–522.

    Article  CAS  PubMed  Google Scholar 

  6. Hans, M. L. and A. M. Lowman (2002) Biodegradable nanoparticles for drug delivery and targeting. Curr. Opin. Solid State Mater. Sci. 6: 319–327.

    Article  CAS  Google Scholar 

  7. Zhao, Y., Y. Zhang, Y. E. Lindström, and J. Li (2015) Tunicate cellulose nanocrystals: preparation, neat films and nanocomposite films with glucomannans. Carbohydr. Polym. 117: 286–296.

    Article  CAS  PubMed  Google Scholar 

  8. Fortunati, E., M. Peltzer, M. Armentano, M. Torre, L. Jiménez, and J. M. Kenny (2012) Effects of modified cellulose nanocrystals on the barrier and migration properties of PLA nano-biocomposites. Carbohydr. Polym. 90: 948–956.

    Article  CAS  PubMed  Google Scholar 

  9. Kalashnikova, I., H. Bizot, H. Cathala, and H. Capron (2012) Modulation of cellulose nanocrystals amphiphilic properties to stabilize oil/water interface. Biomacromolecules. 13: 267–275.

    Article  CAS  PubMed  Google Scholar 

  10. Hirose, E., S. Kimura, S. Itoh, and S. Nishikawa (1999) Tunic morphology and cellulosic components of pyrosomas, doliolids, and salps (Thaliacea, Urochordata). Biol Bull. 196: 113–120.

    Article  CAS  PubMed  Google Scholar 

  11. Kimura, S., C. Ohshima, C. Hirose, C. Nishikawa, and C. Itoh (2001) Cellulose in the house of the appendicularian Oikopleura rufescens. Protoplasma. 216: 71.

    Article  CAS  PubMed  Google Scholar 

  12. Sacui, I. A., R. C. Nieuwendaal, C. J. Burnett, J. J. Stranick, J. Jorfi, J. Weder, C. J. Foster, J. T. Olsson, and T. W. Gilman (2014) Comparison of the properties of cellulose nanocrystals and cellulose nanofibrils isolated from bacteria, tunicate, and wood processed using acid, enzymatic, mechanical, and oxidative methods. ACS Appl. Mater. Interfaces. 6: 6127–6138.

    Article  CAS  PubMed  Google Scholar 

  13. Börjesson, M. and G. Westman (2015) Crystalline nanocellulose—preparation, modification, and properties. pp. 159–191. In: M. Poletto and H. L. Ornaghi Jr (eds.). Cellulose - Fundamental Aspects and Current Trends. In Tech, Rijeka, Croatia.

    Google Scholar 

  14. Min, S. K., H. C. Lee, C. Song, and C. S. Shin (2019) Multifunctional chitosan-coated poly (lactic-co-glycolic acid) nanoparticles for spatiotemporally controlled codelivery of ceramide and C-phycocyanin to treat atopic dermatitis. J. Bioact. Compat. Polym. 34: 163–177.

    Article  CAS  Google Scholar 

  15. Park, S., J. O. Baker, O. E. Himmel, E. A. Parilla, and A. K. Johnson (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol. Biofuels. 3: 10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Grønli, M. G., G. Várhegyi, and C. Di Blasi (2002) Thermogravimetric analysis and devolatilization kinetics of wood. Ind. Eng. Chem. Res. 41: 4201–4208.

    Article  CAS  Google Scholar 

  17. Karkos, P. D., S. C. Leong, C. D. Karkos, D. Sivaji, and D. A. Assimakopoulos (2011) Spirulina in clinical practice: evidence-based human applications. Evid. Based Complement Alternat. Med. 2011: 531053.

    Article  CAS  PubMed  Google Scholar 

  18. Schrantz, K., P. P. Wyss, P. Ihssen, P. Toth, R. K. Bora, K. A. Vitol, A. A. Rozhkova, A. Pieles, A. Thöny-Meyer, and A. Braun (2017) Hematite photoanode co-functionalized with self-assembling melanin and C-phycocyanin for solar water splitting at neutral pH. Catal. Today. 284: 44–51.

    Article  CAS  Google Scholar 

  19. Hoseini, S. M., K. Khosravi-Darani, and M. R. Mozafari (2013) Nutritional and medical applications of spirulina microalgae. Mini Rev. Med. Chem. 13: 1231–1237.

    Article  CAS  Google Scholar 

  20. Makadia H. K. and S. J. Siegel (2011) Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers. 3: 1377–1397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fernandes, E. M., R. A. Pires, A. F. Mano, and F. L. Reis (2013) Bionanocomposites from lignocellulosic resources: Properties, applications and future trends for their use in the biomedical field. Prog. Polym. Sci. 38: 1415–1441.

    Article  CAS  Google Scholar 

  22. Muxika, A., A. Etxabide, A. Uranga, A. Guerrero, and A. De La Caba (2017) Chitosan as a bioactive polymer: Processing, properties and applications. Int. J. Biol. Macromol. 105: 1358–1368.

    Article  CAS  PubMed  Google Scholar 

  23. Casettari, L. and L. Illum (2014) Chitosan in nasal delivery systems for therapeutic drugs. J. Control Release. 190: 189–200.

    Article  CAS  PubMed  Google Scholar 

  24. Kuddus, M., P. Singh, P. Thomas, and P. Al-Hazimi (2013) Recent developments in production and biotechnological applications of C-phycocyanin. Biomed. Res. Int. 2013: 742859.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Brinchi, L., F. Cotana, F. Fortunati, and F. M. Kenny (2013) Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohydr. Polym. 94: 154–169.

    Article  CAS  PubMed  Google Scholar 

  26. Pandey, K. K. (1999) A study of chemical structure of soft and hardwood and wood polymers by FTIR spectroscopy. J. Appl. Polym Sci. 71: 1969–1975.

    Article  CAS  Google Scholar 

  27. Wang, Y., P. Li, and P. Kong (2013) Chitosan-modified PLGA nanoparticles with versatile surface for improved drug delivery. AAPS PharmSciTech. 14: 585–592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kufer, W. and H. Scheer (1983) The diazo reaction of bilirubin: structure of the yellow products: studies on plant bile pigments-14. Tetrahedron. 39: 1887–1892.

    Article  CAS  Google Scholar 

  29. Yu, S. I., S. K. Min, and K. S. Shin (2016) Nanocellulose size regulates microalgal flocculation and lipid metabolism. Sci. Rep. 6: 35684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tang, Y., S. Yang, S. Zhang, and S. Zhang (2014) Preparation and characterization of nanocrystalline cellulose via low-intensity ultrasonic-assisted sulfuric acid hydrolysis. Cellulose. 21: 335–346.

    Article  CAS  Google Scholar 

  31. Sugiyama, J., J. Persson, and J. Chanzy (1991) Combined infrared and electron diffraction study of the polymorphism of native celluloses. Macromolecules. 24: 2461–2466.

    Article  CAS  Google Scholar 

  32. Das, K., D. Ray, D. R. Bandyopadhyay, and R. Sengupta (2010) Study of the properties of microcrystalline cellulose particles from different renewable resources by XRD, FTIR, nano-indentation, TGA and SEM. J. Polym. Environ. 18: 355–363.

    Article  CAS  Google Scholar 

  33. Nam, S., A. D. French, D. D. Condon, and D. Concha (2016) Segal crystallinity index revisited by the simulation of X-ray diffraction patterns of cotton cellulose Iβ and cellulose II. Carbohydr. Polym. 135: 1–9.

    Article  CAS  PubMed  Google Scholar 

  34. Sofla, M. R. K., R. J. Brown, J. Tsuzuki, and J. J. Rainey (2016) A comparison of cellulose nanocrystals and cellulose nanofibres extracted from bagasse using acid and ball milling methods. Adv. Nat. Sci.: Nanosci. Nanotechnol. 7: 035004.

    Google Scholar 

  35. Wei, B., H. Li, H. Tian, H. Xu, and H. Jin (2015) Thermal degradation behavior of hypochlorite-oxidized starch nanocrystals under different oxidized levels. Carbohydr. Polym. 124: 124–130.

    Article  CAS  PubMed  Google Scholar 

  36. Martínez-Sanz, M., A. Lopez-Rubio, and J. M. Lagaron (2011) Optimization of the nanofabrication by acid hydrolysis of bacterial cellulose nanowhiskers. Carbohydr. Polym. 85: 228–236.

    Article  CAS  Google Scholar 

  37. Yang, H., R. Yan, R. Chen, R. H. Lee, and H. Zheng (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel. 86: 1781–1788.

    Article  CAS  Google Scholar 

  38. Liu, L. N., X. L. Chen, L. Z. Zhang, and Z. C. Zhou (2005) Characterization, structure and function of linker polypeptides in phycobilisomes of cyanobacteria and red algae: an overview. Biochim. Biophys. Acta Bioenerg. 1708: 133–142.

    Article  CAS  Google Scholar 

  39. Rodríguez-Sánchez, R., R. Ortiz-Butrón, V. Blas-Valdivia, A. Hernández-García, and E. Cano-Europa (2012) Phycobiliproteins or C-phycocyanin of Arthrospira (Spirulina) maxima protect against HgCl2-caused oxidative stress and renal damage. Food Chem. 135: 2359–2365.

    Article  PubMed  CAS  Google Scholar 

  40. Ajayan, K. V., M. Selvaraju, and M. Thirugnanamoorthy (2012) Enrichment of chlorophyll and phycobiliproteins in Spirulina platensis by the use of reflector light and nitrogen sources: An in-vitro study. Biomass Bioenergy. 47: 436–441.

    Article  CAS  Google Scholar 

  41. Patel, A., S. Mishra, S. Pawar, and S. K. Ghosh (2005) Purification and characterization of C-Phycocyanin from cyanobacterial species of marine and freshwater habitat. Protein Expr. Purif. 40: 248–255.

    Article  CAS  PubMed  Google Scholar 

  42. Obeid, L. M. and Y. A. Hannun (1995) Ceramide: a stress signal and mediator of growth suppression and apoptosis. J. Cell. Biochem. 58: 191–198.

    Article  CAS  PubMed  Google Scholar 

  43. Valentini, L., M. Cardinali, M. Fortunati, M. Torre, and M. M. Kenny (2013) A novel method to prepare conductive nano-crystalline cellulose/graphene oxide composite films. Mater. Lett. 105: 4–7.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2019 R1A2C1085319) and INHA UNIVERSITY RESEARCH GRANT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hwasung Shin.

Additional information

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The authors declare no conflict of interest.

Neither ethical approval nor informed consent was required for this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jun, S.Y., Park, J., Song, H. et al. Tunicate Cellulose Nanocrystals as Stabilizers for PLGA-based Polymeric Nanoparticles. Biotechnol Bioproc E 25, 206–214 (2020). https://doi.org/10.1007/s12257-019-0379-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-019-0379-9

Keywords

Navigation