Skip to main content
Log in

Enhancement of Neuroprotective Effects of Spirulina maxima by a Low-temperature Extraction Process with Ultrasonic Pretreatment

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

17.5 ± 2.41 mg/g and 15.2 ± 2.09 mg/g of total chlorophyll and chlorophyll a, respectively, were obtained from the marine microalga, Spirulina maxima under an optimal extraction condition of 70% ethanol at 65°C for 4 h associated with ultrasonic pretreatment at 40 kHz for 8 h. In comparison, 14.5 ± 1.36 mg/g and 7.1 ± 0.99 mg/g of total chlorophyll and chlorophyll a, respectively, were obtained from a conventional extraction process using 70% ethanol at 80°C for 12 h. The extract from the optimal conditions had the highest ratio of chlorophyll a to total chlorophyll, approximately 3:4, indicating that more intact chlorophyll a was obtained at low temperature. Moreover, the extract obtained using the optimal extraction condition showed substantial neuroprotective effects such as 92.78 ± 0.04% protection against glutamate-induced mouse hippocampal neuronal cells, compared to 81.64 ± 0.07% protection with the extract from the conventional extraction process. Compared to the control, the activities of two key enzymes related to glutathione synthesis, i.e., glutathione reductase and glutathione peroxidase, were also strongly increased, up to 90%, by the extracts from the optimal conditions. Interestingly, the addition of the same concentration of chlorophyll a as in the optimized extract had lower neuroprotective effects than did the extracts. This finding indicates that the extract likely exerted a synergistic effect, showing that the extract had better neuroprotective activity than the single component (chlorophyll a) alone. This work also confirmed the neuroprotective mechanism of the extract mainly due to its high antioxidant activity, allowing it to greatly decrease accumulation of ROS and Ca2+ within HT22 cells. The results of this work will have implications for expanding the use of a nonthermal ultrasonic process to extract heat-sensitive bioactive substances from natural resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Citron, M. (2002) Alzheimer’s disease: treatments in discovery and development. Nat. Neurosci. 5: 1055–1057.

    Article  CAS  PubMed  Google Scholar 

  2. Bartus, R. T., R. L. Dean, D. Beer, and A. S. Lipa (1982) The cholinergic hypothesis of geriatric memory dysfunction. Scienc. 217: 408–417.

    Article  CAS  Google Scholar 

  3. Dawson, G. R. and S. D. Iversen (1993) The effects of novel cholinesterase inhibitors and selective muscarinic receptor agonists in tests of reference and working memory. Behav. Brain Res. 57: 143–153.

    Article  CAS  PubMed  Google Scholar 

  4. Ushijima, M., N. Komoto, Y. Sugizono, I. Mizuno, M. Sumihiro, M. Ichikawa, M. Hayama, N. Kawahara, T. Nakane, O. Shirota, S. Sekita, and M. Kuroyanagi (2008) Triterpene glycosides from the roots of Codonopsis lanceolata. Chem. Pharm. Bull. 56: 308–314.

    Article  CAS  PubMed  Google Scholar 

  5. Li, J. P., Z. M. Liang, and Z. Yuan (2007) Triterpenoid saponins and anti–inflammatory activity of Codonopsis lanceolata. Pharmazi. 62: 463–466.

    CAS  Google Scholar 

  6. Wang, L., M. L. Xu, J. H. Hu, S. K. Rasmussen, and M. H. Wang (2011) Codonopsis lanceolata extract induces G0/G1 arrest and apoptosis in human colon tumor HT–29 cells–involvement of ROS generation and polyamine depletion. Food Chem. Toxicol. 49: 149–154.

    Article  CAS  PubMed  Google Scholar 

  7. Kay, R. A. (1991) Microalgae as food and supplement. Crit. Rev. Food Sci. Nutr. 30: 555–783.

    Article  CAS  PubMed  Google Scholar 

  8. Son, M. H., K. H. Park, A. R. Choi, G. Yoo, M. J. In, D. H. Kim, and H. J. Chae (2009) Investigation of biological activities of enzymatic hydrolysate of Spirulina. J. Korean Soc. Food Sci. Nutr. 38: 136–141.

    Article  CAS  Google Scholar 

  9. Yang, H. N., E. H. Lee, and H. M. Kim (1997) Spirulina platensis inhibits anaphylactic reaction. Life Sci. 61: 1237–1244.

    Article  CAS  PubMed  Google Scholar 

  10. Bhat, S. R (2005) Chlorophyll: The wonder pigment. Sci. Rep. 42: 29–32.

    Google Scholar 

  11. Hosikian, A., S. Lim, R. Halim, and M. K. Danquah (2010) Chlorophyll extraction from microalgae: a review on the process engineering aspects. Int. J. Chem. Eng. 2010: 1–11.

    Article  CAS  Google Scholar 

  12. Lee, Y. J., S. H. Kim, J. S. Kim, J. A. Han, H. J. Seo, H. J. Lim, and S. Y. Choi (2005) Studies on simultaneous determination of chlorophyll a and b, pheophorbide a, and ß–carotene in chlorella and Spirulina products. J. Food Hyg. Saf. 20: 141–146.

    Google Scholar 

  13. Gruskin, B. (1940) Chlorophyll—Its therapeutic place in acute and suppurative disease: preliminary report of clinical use and rationale. Am. J. Surg. 49: 49–55.

    Article  CAS  Google Scholar 

  14. Mccarty, M. F. (2001) The chlorophyll metabolite phytanic acid is a natural rexinoid––potential for treatment and prevention of diabetes. Med. Hypothese. 56: 217–219.

    Article  CAS  Google Scholar 

  15. Bechelli, J., M. Coppage, K. Rosell, and J. Liesveld (2011) Cytotoxicity of algae extracts on normal and malignant cells. Leuk. Res. Treatmen. 2011: 1–7.

    Article  Google Scholar 

  16. Rehni, A. K., H. S. Pantlya, R. Shri, and M. Singh (2007) Effect of chlorophyll and aqueous extracts of Bacopa monniera and Valeriana wallichii on ischaemia and reperfusion–induced cerebral injury in mice. Indian J. Exp. Biol. 45: 764–769.

    PubMed  Google Scholar 

  17. Hosikian, A., S. Lim, R. Halim, and M. K. Danquah (2010) Chlorophyll extraction from microalgae: A review on the process engineering aspects. Int. J. Chem. Eng. 2010: 1–11.

    Article  CAS  Google Scholar 

  18. Chung, K. W., W. I. Kim, I. K. Hong, and K. A. Park (2000) Ultrasonic energy effects on squalene extraction from amaranth seed. Appl. Chem. 4: 149–152.

    Google Scholar 

  19. Oh, S. H., J. H. Ahn, D. H. Kang, and H. Y. Lee (2011) The effect of ultrasonificated extracts of Spirulina maxima on the Anticancer activity,” Marine Biotechnol. 13: 205–214.

    Article  CAS  Google Scholar 

  20. Lee, D. H. and J. H. Hong (2015) Antioxidant activities of chlorella extracts and physicochemical characteristics of spraydried chlorella powders. Korean J. Food Preserv. 22: 591–597.

    Article  Google Scholar 

  21. Petrovic, S. M., S. R. Savic, D. Z. Markovic, and Ž. B. Petronijevic (2014) In vitro studies of temperature and pH influence on chlorophyll degradation by horseradish peroxidase: Spectroscopic and HPLC studies. Hem. Ind. 68: 233–239.

    Article  CAS  Google Scholar 

  22. Weon, J. B., B. Lee, B. R. Yun, J. Lee, H. Y. Lee, D. S. Park, H. C. Chung, J. Y. Chung, and C. J. Ma (2013) Memory enhancing effect of codonopsis lanceolata by high hydrostatic pressure process and fermentation. Korean J. Pharmacogn. 44: 41–46.

    Google Scholar 

  23. Lee, J., J. B. Weon, and C. J. Ma (2014) Neuroprotective Activity of Phytosterols Isolated from Artemisia apiacea. Korean J. Pharmacogn. 45: 214–219.

    Google Scholar 

  24. Lee, J. B., J. H. Ha, C. J. Song, S. D. Jung, H. B. Park, J. S. Kim, H. M. Sung, and M. J. Chang (2000) Effect of repeated stress on the antioxidant activities of brain. Korean Circ. J. 30: 67–72.

    CAS  Google Scholar 

  25. Lee, M. R., S. H. Moon, A. R. Choi, S. C. Lee, K. H. Ahn, and H. R. Park (2011) Neuroprotective effects of extracts from diospyros kaki L. peel. Korean J. Food Cookery Sci. 27: 67–73.

    Article  Google Scholar 

  26. Satoh, T., Y. Enokido, H. Aoshima, Y. Uchiyama, and H. Hatanaka (1997) Changes in mitochondrial membrane potential during oxidative stress–induced apoptosis in PC12 cells. J. Neurosci. Res. 50: 413–420.

    Article  CAS  PubMed  Google Scholar 

  27. Hernadez, A. C., I. Nieves, M. Meckes, G. Chamorro, and B. L. Barron (2002) Antiviral activity of Spirulina maxima against Herpes simplex virus type 2. Antiviral Res. 56: 297–285.

    Google Scholar 

  28. Coyle, J. T. and P. Puttfarcken (1993) Oxidative stress, glutamate, and neurodegenerative disorders. Scienc. 262: 689–695.

    Article  CAS  Google Scholar 

  29. Ha, J. S. and S. S. Park (2006) Glutamate–induced oxidative stress, but not cell death, is largely dependent upon extracellular calcium in mouse neuronal HT22 cells. Neurosci. Lett. 393: 165–169.

    Article  CAS  PubMed  Google Scholar 

  30. Ahmed, I., A. John, C. Vijayasarathy, M. A. Robin, and H. Raza (2002) Differential modulation of growth and glutathione metabolism in cultured rat astrocytes by 4–hydroxynonenal and green tea polyphenol, epigallocatechin–3–gallate. Neurotoxicolog. 23: 289–300.

    Article  CAS  Google Scholar 

  31. Armstrong, J. S. and D. P. Jones (2002) Glutathione depletion enforces the mitochondrial permeability transition and causes cell death in Bcl–2 overexpressing HL60 cells. FASEB J. 16: 1263–1265.

    Article  CAS  PubMed  Google Scholar 

  32. Ansari, M. A., H. M. Abdul, G. Joshi, W. O. Opii, and D. A. Butterfield (2009) Protective effect of quercetin in primary neurons against Abeta (1–42): relevance to Alzheimer’s disease. J. Nutr. Biochem. 20: 269–75.

    Article  CAS  PubMed  Google Scholar 

  33. Miyamoto, M., T. H. Murphy, R. L. Schnaar, and J. T. Coyle (1989) Antioxidants protect against glutamate–induced cytotoxicity in a neuronal cell line. J. Pharmacol. Exp. Ther. 250: 1132–1140.

    CAS  PubMed  Google Scholar 

  34. Albrecht, P. J., J. P. Dahl, O. K. Stoltzfus, R. Levenson, and S. W. Levison (2002) Ciliary neurotrophic factor activates spinal cord astrocytes, stimulating their production and release of fibroblast growth factor–2, to increase motor neuron survival. Exp. Neurol. 173: 46–62.

    Article  CAS  PubMed  Google Scholar 

  35. Bando, Y., T. Katayama, K. Kasai, M. Taniguchi, M. Tamatani, and M. Tohyama (2003) GRP94 (94 kDa glucose–regulated protein) suppresses ischemic neuronal cell death against ischemia/ reperfusion injury. Eur. J. Neurosci. 18: 829–840.

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by a research grant from the Marine Biotechnology Program by the Ministry of Oceans and Fisheries (PM59530).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyeon Yong Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, W.Y., Kang, D.H. & Lee, H.Y. Enhancement of Neuroprotective Effects of Spirulina maxima by a Low-temperature Extraction Process with Ultrasonic Pretreatment. Biotechnol Bioproc E 23, 415–423 (2018). https://doi.org/10.1007/s12257-018-0066-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-018-0066-2

Keywords

Navigation