Skip to main content
Log in

Removal of Feedback Inhibition of Corynebacterium glutamicum Phosphoenolpyruvate Carboxylase by Addition of a Short Terminal Peptide

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Phosphoenolpyruvate carboxylase (PEPC) catalyzes the carboxylation of phosphoenolpyruvate (PEP) in the presence of bicarbonate to form oxaloacetate (OAA), and it plays an important role in high-efficient production of OAA-derived metabolites such as lysine, glutamate and succinate. However, PEPCs often suffered from serious feedback inhibition by various metabolic effectors like aspartate. Here, the feedback inhibition of PEPC from Corynebacterium glutamicum was removed by adding a short terminal peptide like His-tag. The effect of His-tag location on the structure and important properties such as activity, thermostability and feedback inhibition of PEPC has been investigated. The purified untagged PEPC, Nterminal His-tagged PEPC (PEPC-N-His) and C-terminal His-tagged PEPC (PEPC-C-His) were characterized. PEPCN- His (439.71/sec/mM) showed a 1.26 and 186-fold higher catalytic efficiency than untagged PEPC (348.59/sec/mM) and PEPC-C-His (2.36/sec/mM), respectively. Both PEPCN- His and untagged PEPC were significantly inhibited by aspartate at the concentrations above 4 mM (residual activities < 10%), while PEPC-C-His was almost desensitized to aspartate within 10 mM (around 90% of residual activity). Structural analysis showed that the extension of C-terminus may cause steric hindrance for aspartate binding with enzymes, leading to the deregulation of feedback inhibition of PEPC-C-His. This study provides a deeper understanding of the effect of terminal fragments on the structure and function of PEPCs, and helps to engineer the feedback inhibition of PEPCs and structurally similar enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kai, Y., H. Matsumura, and K. Izui (2003) Phosphoenolpyruvate carboxylase: Three-dimensional structure and molecular mechanisms. Arch. Biochem. Biophys. 414: 170–179.

    Article  CAS  Google Scholar 

  2. Bandyopadhyay, A., K. Datta, J. Zhang, W. Yang, S. Raychaudhuri, M. Miyao, and S. K. Datta (2007) Enhanced photosynthesis rate in genetically engineered indica, rice expressing pepc gene cloned from maize. Plant Sci. 172: 1204–1209.

    Article  CAS  Google Scholar 

  3. Shirai, T., K. Fujimura, C. Furusawa, K. Nagahisa, S. Shioya, and H. Shimizu (2007) Study on roles of anaplerotic pathways in glutamate overproduction of Corynebacterium glutamicum by metabolic flux analysis. Microb. Cell Fact. 6: 1–11.

    Article  Google Scholar 

  4. Dong, L. Y., T. Masuda, T. Kawamura, S. Hata, and K. Izui (1998) Cloning, expression, and characterization of a root-form phosphoenolpyruvate carboxylase from Zea mays: Comparison with the C4-form enzyme. Plant Cell Physiol. 39: 865–873.

    Article  CAS  Google Scholar 

  5. Bläsing, O. E., K. Ernst, M. Streubel, P. Westhoff, and P. Svensson (2002) The non-photosynthetic phosphoenolpyruvate carboxylases of the C4 dicot Flaveria trinervia-implications for the evolution of C4 photosynthesis. Planta. 215: 448–456.

    Article  Google Scholar 

  6. Chen, Z., R. R. Bommareddy, D. Frank, S. Rappert, and A. P. Zeng (2014) Deregulation of feedback inhibition of phosphoenolpyruvate carboxylase for improved lysine production in Corynebacterium glutamicum. Appl. Environ. Microbiol. 80: 1388–1393.

    Article  Google Scholar 

  7. Wada, M., K. Sawada, K. Ogura, Y. Shimono, T. Hagiwara, M. Sugimoto, A. Onuki, and A. Yokota (2016) Effects of phosphoenolpyruvate carboxylase desensitization on glutamic acid production in Corynebacterium glutamicum ATCC 13032. J. Biosci. Bioeng. 121: 172–177.

    Article  CAS  Google Scholar 

  8. Cho, C. W., H. P. Sun, and D. H. Nam (2001) Production and purification of single chain human insulin precursors with various fusion peptides. Biotechnol. Bioproc. Eng. 6: 144–149.

    Article  CAS  Google Scholar 

  9. Masuda, J., E. Takayama, A. Satoh, K. Kojima-Aikawa, K. Suzuki, and I. Matsumoto (2004) A novel expression vector, designated as pHisJM, for producing recombinant His-fusion proteins. Biotechnol. Lett. 26: 1543–1548.

    Article  CAS  Google Scholar 

  10. Yang, J., K. Ni, D. Wei, and Y. Ren (2015) One-step purification and immobilization of his-tagged protein via Ni2+-functionalized Fe3O4 @ polydopamine magnetic nanoparticles. Biotechnol. Bioproc. Eng. 20: 901–907.

    Article  CAS  Google Scholar 

  11. Carson, M., D. H. Johnson, H. McDonald, C. Brouillette, and L. J. Delucas (2007) His-tag impact on structure. Acta Crystallogr. D. Biol. Crystallogr. 63: 295–301.

    Article  CAS  Google Scholar 

  12. Woestenenk, E. A., M. Hammarström, S. van den Berg, T. Härd, and H. Berglund (2004) His tag effect on solubility of human proteins produced in Escherichia coli: A comparison between four expression vectors. J. Struct. Funct. Genom. 5: 217–229.

    Article  CAS  Google Scholar 

  13. Freydank, A. C., W. Brandt, and B. Dräger (2008) Protein structure modeling indicates hexahistidine-tag interference with enzyme activity. Proteins 72: 173–183.

    Article  CAS  Google Scholar 

  14. Yeon, Y. J., H. J. Park, H. Y. Park, and Y. J. Yoo (2014) Effect of His-tag location on the catalytic activity of 3-hydroxybutyrate dehydrogenase. Biotechnol. Bioproc. Eng. 19: 798–802.

    Article  CAS  Google Scholar 

  15. Kai, Y., H. Matsumura, T. Inoue, K. Terada, Y. Nagara, T. Yoshinaga, A. Kihara, K. Tsumura, and K. Izui (1999) Three-dimensional structure of phosphoenolpyruvate carboxylase: A proposed mechanism for allosteric inhibition. Proc. Natl. Acad. Sci. 96: 823–828.

    Article  CAS  Google Scholar 

  16. Chant, A., C. M. Kraemer-Pecore, R. Watkin, and G. G. Kneale (2005) Attachment of a histidine tag to the minimal zinc finger protein of the Aspergillus nidulans gene regulatory protein AreA causes a conformational change at the DNA-binding site. Protein Expr. Purif. 39: 152–159.

    Article  CAS  Google Scholar 

  17. Lara, M. V., S. D. X. Chuong, H. Akhani, C. S. Andreo, and G. E. Edwards (2006) Species having C4 single-cell-type photosynthesis in the chenopodiaceae family evolved a photosynthetic phosphoenolpyruvate carboxylase like that of Kranz-type C4 species. Plant Physiol. 142: 673–684.

    Article  CAS  Google Scholar 

  18. Endo, T., Y. Mihara, T. Furumoto, H. Matsumura, Y. Kai, and K. Izui (2008) Maize C4-form phosphoenolpyruvate carboxylase engineered to be functional in C3 plants: Mutations for diminished sensitivity to feedback inhibitors and for increased substrate affinity. J. Exp. Bot. 59: 1811–1818.

    Article  CAS  Google Scholar 

  19. Blonde, J. D. and W. C. Plaxton (2003) Structural and kinetic properties of high and low molecular mass phosphoenolpyruvate carboxylase isoforms from the endosperm of developing castor oilseeds. J. Biol. Chem. 278: 11867–11873.

    Article  CAS  Google Scholar 

  20. Marczewski, W. (1989) Kinetic properties of phosphoenolpyruvate carboxylase from lupin nodules and roots. Physiol. Plantarum. 76: 539–543.

    Article  CAS  Google Scholar 

  21. Krieger, E., G. Koraimann, and G. Vriend (2002) Increasing the precision of comparative models with YASARA NOVA-a selfparameterizing force field. Proteins 47: 393–402.

    Article  CAS  Google Scholar 

  22. Matsumura, H., Y. Xie, S. Shirakata, T. Inoue, T. Yoshinaga, Y. Ueno, K. Izui, and Y. Kai (2002) Crystal structures of C4 form maize and quaternary complex of E. coli phosphoenolpyruvate carboxylases. Struct. 10: 1721–1730.

    Article  CAS  Google Scholar 

  23. Schlieper, D., K. Förster, J. K. Paulus, and G. Groth (2014) Resolving the activation site of positive regulators in plant phosphoenolpyruvate carboxylase. Mol. Plant. 7: 437–440.

    Article  CAS  Google Scholar 

  24. Xu, W. X., S. Ahmed, H. Moriyama, and R. Chollet (2006) The importance of the strictly conserved, C-terminal glycine residue in phosphoenolpyruvate carboxylase for overall catalysis mutagenesis and truncation of GLY-961 in the sorghum C4 leaf isoform. J. Biol. Chem. 281: 17238–17245.

    Article  CAS  Google Scholar 

  25. Jossek, R., J. Bongaerts, and G. A. Sprenger (2001) Characterization of a new feedback-resistant 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase AroF of Escherichia coli. FEMS Microbiol. Lett. 202: 145–148.

    CAS  Google Scholar 

  26. Zhang, C., Z. Kang, J. Zhang, G. Du, J. Chen, and X. Yu (2014) Construction and application of novel feedback-resistant 3-deoxy-D-arabino-heptulosonate-7-phosphate synthases by engineering the N-terminal domain for L-phenylalanine synthesis. FEMS Microbiol. Lett. 353: 11–18.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Zheng.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, D., Zhao, J., Cao, G. et al. Removal of Feedback Inhibition of Corynebacterium glutamicum Phosphoenolpyruvate Carboxylase by Addition of a Short Terminal Peptide. Biotechnol Bioproc E 23, 72–78 (2018). https://doi.org/10.1007/s12257-017-0313-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-017-0313-y

Keywords

Navigation