Skip to main content
Log in

One-step purification and immobilization of his-tagged protein via Ni2+-functionalized Fe3O4@polydopamine magnetic nanoparticles

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Ni2+-functionalized Fe3O4@polydopamine magnetic nanoparticles (Ni2+-PD-MNPs) were designed and synthesized by in situ coating of magnetic nanoparticles with polydopamine, followed by conjugation of Ni2+ to the polydopamine film. The Ni2+-PD-MNPs were used to purify His-tagged red fluorescent protein (His-RFP) via affinity interaction between Ni2+ and the His-tag. The results showed that the Ni2+-PD-MNPs had extraordinary selectivity for His-RFP purification. In addition, a Histagged transaminase (ω-transaminase BJ110) was selectively immobilized onto the Ni2+-PD-MNPs without purification, and the immobilized enzyme showed improved specific activity, as well as enhanced stability and reusability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Terpe, K. (2003) Overview of tag protein fusions: From molecular and biochemical fundamentals to commercial systems. Appl. Microbiol. Biotechnol. 60: 523–533.

    Article  CAS  Google Scholar 

  2. Cao, L. Q. (2005) Immobilised enzymes: Science or art? Curr. Opin. Chem. Biol. 9: 217–226.

    Article  CAS  Google Scholar 

  3. Ghosh, R. (2002) Protein separation using membrane chromatography: Opportunities and challenges. J. Chromatogr A. 952: 13–27.

    Article  CAS  Google Scholar 

  4. Palani, A., J. S. Lee, J. Huh, M. Kim, Y. J. Lee, J. H. Chang, K. Lee, and S. W. Lee (2008) Selective enrichment of cysteine-containing peptides using SPDP-functionalized superparamagnetic Fe3O4@SiO2 nanoparticles: Application to comprehensive proteomic profiling. J. Proteome Res. 7: 3591–3596.

    Article  CAS  Google Scholar 

  5. Muir, T. W., D. Sondhi, and P. A. Cole (1998) Expressed protein ligation: A general method for protein engineering. Proc. Natl. Acad. Sci. USA. 95: 6705–6710.

    Article  CAS  Google Scholar 

  6. Lichty, J. J., J. L. Malecki, H. D. Agnew, D. J. Michelson-Horowitz, and S. Tan (2005) Comparison of affinity tags for protein purification. Protein Exp. Purif. 41: 98–105.

    Article  CAS  Google Scholar 

  7. Scheich, C., V. Sievert, and K. Büssow (2003) An automated method for high-throughput protein purification applied to a comparison of His-tag and GST-tag affinity chromatography. BMC Biotechnol. 3: 1–8.

    Article  Google Scholar 

  8. Porath, J., J. Carlsson, I. Olsson, and G. Belfrage (1975) Metal chelate affinity chromatography, a new approach to protein fractionation. Nature 258: 598–599.

    Article  CAS  Google Scholar 

  9. Frenzel, A., C. Bergemann, G. Kohl, and T. Reinard (2003) Novel purification system for 6× His-tagged proteins by magnetic affinity separation. J. Chromatogr B. 793: 325–329.

    Article  CAS  Google Scholar 

  10. Vinckier, N. K., A. Chworos, and S. M. Parsons (2011) Improved isolation of proteins tagged with glutathione S-transferase. Protein Express. Purif. 75: 161–164.

    Article  CAS  Google Scholar 

  11. Tural, B., S. Tural, E. Erta, Yalnklç, and A. S. Demir (2013) Purification and covalent immobilization of benzaldehyde lyase with heterofunctional chelate-epoxy modified magnetic nanoparticles and its carboligation reactivity. J. Mol. Catal. B Enz. 95: 41–47.

    Article  CAS  Google Scholar 

  12. Rossi, L. M., N. S. Costa, F. P. Silva, and R. Wojcieszak (2014) Magnetic nanomaterials in catalysis: Advanced catalysts for magnetic separation and beyond. Green Chem. 16: 2906–2933.

    Article  CAS  Google Scholar 

  13. Engelmark, C. K., M. Kadow, Y. Wikmark, H. M. Svedendahl, M. L. Rothstein, D. M. Rothstein, and J. E. Bäckvall (2014) A general protein purification and immobilization method on controlled porosity glass: Biocatalytic applications. Chem. Commun. 50: 9134–9137.

    Article  Google Scholar 

  14. Lin, Y. C., M. R. Liang, Y. C. Lin, and C. T. Chen (2011) Specifically and reversibly immobilizing proteins/enzymes to Nitriolotriacetic- acid-modified mesoporous silicas through Histidine tags for purification or catalysis. Chem-Eur J. 17: 13059–13067.

    Article  CAS  Google Scholar 

  15. Xu, F., J. H. Geiger, G. L. Baker, and M. L. Bruening (2011) Polymer brush-modified magnetic nanoparticles for His-tagged protein purification. Langmuir. 27: 3106–3112.

    Article  CAS  Google Scholar 

  16. Ho, L. F., S. Y. Li, S. C. Lin, and W. H. Hsu (2004) Integrated enzyme purification and immobilization processes with immobilized metal affinity adsorbents. Proc. Biochem. 39: 1573–1581.

    Article  CAS  Google Scholar 

  17. Ball, V., D. D. Frari, V. Toniazzo, and D. Ruch (2012) Kinetics of polydopamine film deposition as a function of pH and dopamine concentration: Insights in the polydopamine deposition mechanism. J. Colloid Interface Sci. 386: 366–372.

    Article  CAS  Google Scholar 

  18. Lee, H., S. M. Dellatore, W. M. Miller, and P. B. Messersmith (2007) Mussel-inspired surface chemistry for multifunctional coatings. Sci. 318: 426–430.

    Article  CAS  Google Scholar 

  19. Yan, Y., Z. Zheng, C. Deng, X. Zhang, and P. Yang (2013) Facile synthesis of Ti4+-immobilized Fe3O4@polydopamine core-shell microspheres for highly selective enrichment of phosphopeptides. Chem. Commun. 49: 5055–5057.

    Article  CAS  Google Scholar 

  20. Lin, Y. C., M. R. Liang, Y. C. Lin, and C. T. Chen (2011) Specifically and reversibly immobilizing proteins/enzymes to nitriolotriacetic-acid-modified mesoporous silicas through Histidine tags for purification or catalysis. Chem. Eur. J. 17: 13059–13067.

    Article  CAS  Google Scholar 

  21. Liu, J., Z. K. Sun, Y. H. Deng, Y. Zou, C. Y. Li, X. H. Guo, L. Q. Xiong, Y. Gao, F. Y. Li, and D. Y. Zhao (2009) Highly water-dispersible biocompatible magnetite particles with low cytotoxicity stabilized by citrate groups. Angew Chem. 121: 5989–5993.

    Article  Google Scholar 

  22. Aminiana, M., F. Nabatchian, A. V. Raygani, and M. Torabi (2013) Mechanism of Coomassie Brilliant Blue G-250 binding to cetyltrimethylammonium bromide: An interference with the Bradford assay. Anal. Biochem. 434: 287–291.

    Article  Google Scholar 

  23. Lele, S. and T. R. Anantharaman (1966) Influence of crystallite shape on particle size broadening of Debye-Scherrer reflections. Proc. Math. Sci. 64: 261–274.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuhong Ren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Ni, K., Wei, D. et al. One-step purification and immobilization of his-tagged protein via Ni2+-functionalized Fe3O4@polydopamine magnetic nanoparticles. Biotechnol Bioproc E 20, 901–907 (2015). https://doi.org/10.1007/s12257-015-0136-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-015-0136-7

Keywords

Navigation