Skip to main content

Advertisement

Log in

Effects of induced pluripotent stem cells-derived conditioned medium on the proliferation and anti-apoptosis of human adipose-derived stem cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Human adipose-derived stem cells (hASCs) become an appealing source for regenerative medicine. However, with the multi-passage or cryopreservation for large-scale growth procedures in terms of preclinical and clinical purposes, hASCs often reveal defective cell viability, which is a major obstacle for cell therapy. In our study, the effects of induced pluripotent stem cells-derived conditioned medium (iPS-CM) on the proliferation and anti-apoptosis in hASCs were investigated. hASCs at passage 1 were identified by the analysis of typical surface antigens with flow cytometry assay and adipogenic and osteogenic differentiation. The effect of iPS-CM on the proliferation in hASCs was analyzed by cell cycle assay and Ki67/P27 quantitative polymerase chain reaction analysis. The effect of iPS-CM on the anti-apoptosis of hASCs irradiated by 468 J/m2 of ultraviolet C was investigated by annexin v/propidium iodide analysis, mitochondrial membrane potential assay, intracellular reactive oxygen species assay, Western blotting and caspase activity assays. The effect of iPS-CM on the surface antigen expressions of hASCs was analyzed using flow cytometry assay. The levels of Activin A and bFGF in culture supernatant of hASCs with different treatments were also detected by enzyme-linked immunosorbent assay. iPS-CM promoted proliferation and inhibited apoptosis of hASCs. This discovery demonstrates that iPS-CM might be used as one of the available means to overcome the propagation obstacle for hASCs and make for large-scale growth procedures in terms of preclinical and clinical purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Takeda K, Sowa Y, Nishino K, Itoh K, Fushiki S (2015) Adipose-derived stem cells promote proliferation, migration, and tube formation of lymphatic endothelial cells in vitro by secreting lymphangiogenic factors. Ann Plast Surg 74:728–736

    Article  CAS  PubMed  Google Scholar 

  2. Chang KA, Lee JH, Suh YH (2014) Therapeutic potential of human adipose-derived stem cells in neurological disorders. J Pharmacol Sci 126(4):293–301

    Article  CAS  PubMed  Google Scholar 

  3. Salgado AJ, Reis RL, Sousa NJ, Gimble JM (2010) Adipose tissue derived stem cells secretome: soluble factors and their roles in regenerative medicine. Curr Stem Cell Res Ther 5:103–110

    Article  CAS  PubMed  Google Scholar 

  4. Pal R, Hanwate M, Jan M, Totey S (2009) Phenotypic and functional comparison of optimum culture conditions for upscaling of bone marrow-derived mesenchymal stem cells. J Tissue Eng Regen Med 3:163–174

    Article  CAS  PubMed  Google Scholar 

  5. Liu S, Yuan M, Hou K, Zhang L, Zheng X, Zhao B, Sui X, Xu W, Lu S, Guo Q (2012) Immune characterization of mesenchymal stem cells in human umbilical cord Wharton’s jelly and derived cartilage cells. Cell Immunol 278:35–44

    Article  CAS  PubMed  Google Scholar 

  6. Santiago LY, Nowak RW, Peter Rubin J, Marra KG (2006) Peptide-surface modification of poly(caprolactone) with laminin-derived sequences for adipose-derived stem cell applications. Biomaterials 27:2962–2969

    Article  CAS  PubMed  Google Scholar 

  7. Zhou J, Lu P, Ren H, Zheng Z, Ji J, Liu H, Jiang F, Ling S, Heng BC, Hu X, Ouyang H (2014) 17β-Estradiol protects human eyelid-derived adipose stem cells against cytotoxicity and increases transplanted cell survival in spinal cord injury. J Cell Mol Med 18:326–343

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Solari C, Losino N, Luzzani C, Waisman A, Bluguermann C, Questa M, Sevlever G, Miriuka S, Barañao L, Guberman A (2011) Induced pluripotent stem cells’ self-renewal and pluripotency is maintained by a bovine granulosa cell line-conditioned medium. Biochem Biophys Res Commun 410:252–257

    Article  CAS  PubMed  Google Scholar 

  9. Li LF, Liu YY, Yang CT, Chien Y, Twu NF, Wang ML, Wang CY, Huang CC, Kao KC, Hsu HS, Wu CW, Chiou SH (2013) Improvement of ventilator-induced lung injury by IPS cell-derived conditioned medium via inhibition of PI3 K/Akt pathway and IP-10-dependent paracrine regulation. Biomaterials 34:78–91

    Article  PubMed  Google Scholar 

  10. Firas J, Liu X, Nefzger CM, Polo JM (2014) GM-CSF and MEF-conditioned media support feeder-free reprogramming of mouse granulocytes to iPS cells. Differentiation 87:193–199

    Article  CAS  PubMed  Google Scholar 

  11. Kitazawa A, Shimizu N (2011) Differentiation of mouse induced pluripotent stem cells into neurons using conditioned medium of dorsal root ganglia. N Biotechnol 28:326–333

    Article  CAS  PubMed  Google Scholar 

  12. Kasuda S, Tatsumi K, Sakurai Y, Kato J, Taminishi S, Takeda T, Ohashi K, Okano T, Hatake K, Shima M (2011) Expression of coagulation factors from murine induced pluripotent stem cell-derived liver cells. Blood Coagul Fibrinolysis 22:271–279

    Article  CAS  PubMed  Google Scholar 

  13. Lin J, Fernandez I, Roy K (2011) Development of feeder-free culture systems for generation of ckit + sca1 + progenitors from mouse iPS cells. Stem Cell Rev 7:736–747

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Pluchino S, Cossetti C (2013) How stem cells speak with host immune cells in inflammatory brain diseases. Glia 61:1379–1401

    Article  PubMed Central  PubMed  Google Scholar 

  15. Ribeiro CA, Fraga JS, Grãos M, Neves NM, Reis RL, Gimble JM, Sousa N, Salgado AJ (2012) The secretome of stem cells isolated from the adipose tissue and Wharton jelly acts differently on central nervous system derived cell populations. Stem Cell Res Ther 3:18

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Ranganath SH, Levy O, Inamdar MS, Karp JM (2012) Harnessing the mesenchymal stem cell secretome for the treatment of cardiovascular disease. Cell Stem Cell 10:244–258

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Zhang Y, Wang D, Cao K, Chen M, Yang X, Tao Y (2014) Rat induced pluripotent stem cells protect H9C2 cells from cellular senescence via a paracrine mechanism. Cardiology 128(1):43–50

    Article  CAS  PubMed  Google Scholar 

  18. Neel S, Singla DK (2011) Induced pluripotent stem (iPS) cells inhibit apoptosis and fibrosis in streptozotocin-induced diabetic rats. Mol Pharm 8:2350–2357

    Article  CAS  PubMed  Google Scholar 

  19. Zhang Y, Deng C, Qian J, Zhang M, Li X (2014) Improvement of radiotherapy-induced lacrimal gland injury by induced pluripotent stem cell-derived conditioned medium via MDK and inhibition of the p38/JNK pathway. Int J Mol Sci 15:18407–18421

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Zeng G, Lai K, Li J, Zou Y, Huang H, Liang J, Tang X, Wei J, Zhang P (2013) A rapid and efficient method for primary culture of human adipose-derived stem cells. Organogenesis 9:287–295

    Article  PubMed Central  PubMed  Google Scholar 

  21. Vishnubalaji R, Al-Nbaheen M, Kadalmani B, Aldahmash A, Ramesh T (2012) Comparative investigation of the differentiation capability of bone-marrow- and adipose-derived mesenchymal stem cells by qualitative and quantitative analysis. Cell Tissue Res 347:419–427

    Article  PubMed  Google Scholar 

  22. Cai J, Li W, Su H, Qin D, Yang J, Zhu F, Xu J, He W, Guo X, Labuda K, Peterbauer A, Wolbank S, Zhong M, Li Z, Wu W, So KF, Redl H, Zeng L, Esteban MA, Pei D (2010) Generation of human induced pluripotent stem cells from umbilical cord matrix and amniotic membrane mesenchymal cells. J Biol Chem 285:11227–11234

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Zhao Z, Yu R, Yang J, Liu X, Tan M, Li H, Chen J (2012) Maxadilan prevents apoptosis in iPS cells and shows no effects on the pluripotent state or karyotype. PLoS ONE 7:e33953

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Guo X, Lian R, Guo Y, Liu Q, Ji Q, Chen J (2015) bFGF and Activin A function to promote survival and proliferation of single iPS cells in conditioned half-exchange mTeSR1 medium. Hum Cell 28:122–132

    Article  CAS  PubMed  Google Scholar 

  25. Unek G, Ozmen A, Mendilcioglu I, Simsek M, Korgun ET (2014) The expression of cell cycle related proteins PCNA, Ki67, p27 and p57 in normal and preeclamptic human placentas. Tissue Cell 46:198–205

    Article  CAS  PubMed  Google Scholar 

  26. Zhang Y, Wang Y, Wang L, Zhang Y, Qin Y, Chen T, Han W, Chen G (2012) Effects of Rehmannia glutinosa oligosaccharide on human adipose-derived mesenchymal stem cells in vitro. Life Sci 91:1323–1327

    Article  CAS  PubMed  Google Scholar 

  27. Li Y, Yang X, Nie FF, Zhao X, Qin ZL, Li JN (2013) Biological characteristics of human adipose-derived stem cells and their response to periostin in vitro. Chin Med J (Engl) 126:1491–1497

    CAS  Google Scholar 

  28. Minonzio G, Corazza M, Mariotta L, Gola M, Zanzi M, Gandolfi E, De Fazio D, Soldati G (2014) Frozen adipose-derived mesenchymal stem cells maintain high capability to grow and differentiate. Cryobiology 69:211–216

    Article  PubMed  Google Scholar 

  29. Freimark D, Pino-Grace P, Pohl S, Weber C, Wallrapp C, Geigle P, Pörtner R, Czermak P (2010) Use of encapsulated stem cells to overcome the bottleneck of cell availability for cell therapy approaches. Transfus Med Hemother 37:66–73

    Article  PubMed Central  PubMed  Google Scholar 

  30. Renzi S, Lombardo T, Dotti S, Dessì SS, De Blasio P, Ferrari M (2012) Mesenchymal stromal cell cryopreservation. Biopreserv Biobank 10:276–281

    Article  CAS  PubMed  Google Scholar 

  31. Zhu Y, Liu T, Ye H, Song K, Ma X, Cui Z (2010) Enhancement of adipose-derived stem cell differentiation in scaffolds with IGF-I gene impregnation under dynamic microenvironment. Stem Cells Dev 19:1547–1556

    Article  CAS  PubMed  Google Scholar 

  32. Yan A, Avraham T, Zampell JC, Haviv YS, Weitman E, Mehrara BJ (2011) Adipose-derived stem cells promote lymphangiogenesis in response to VEGF-C stimulation or TGF-β1 inhibition. Future Oncol 7:1457–1473

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Shoji T, Ii M, Mifune Y, Matsumoto T, Kawamoto A, Kwon SM, Kuroda T, Kuroda R, Kurosaka M, Asahara T (2010) Local transplantation of human multipotent adipose-derived stem cells accelerates fracture healing via enhanced osteogenesis and angiogenesis. Lab Invest 90:637–649

    Article  PubMed  Google Scholar 

  34. Zhu M, Feng Y, Dangelmajer S, Guerrero-Cázares H, Chaichana KL, Smith CL, Levchenko A, Lei T, Quiñones-Hinojosa A (2015) Human cerebrospinal fluid regulates proliferation and migration of stem cells through insulin-like growth factor-1. Stem Cells Dev 24:160–171

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Sobral LM, Bufalino A, Lopes MA, Graner E, Salo T, Coletta RD (2011) Myofibroblasts in the stroma of oral cancer promote tumorigenesis via secretion of activin A. Oral Oncol 47:840–846

    Article  CAS  PubMed  Google Scholar 

  36. Licona-Limón P, Alemán-Muench G, Chimal-Monroy J, Macías-Silva M, García-Zepeda EA, Matzuk MM, Fortoul TI, Soldevila G (2009) Activins and inhibins: novel regulators of thymocyte development. Biochem Biophys Res Commun 381:229–235

    Article  PubMed Central  PubMed  Google Scholar 

  37. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  CAS  PubMed  Google Scholar 

  38. Drago D, Cossetti C, Iraci N, Gaude E, Musco G, Bachi A, Pluchino S (2013) The stem cell secretome and its role in brain repair. Biochimie 95:2271–2285

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Gazdhar A, Grad I, Tamò L, Gugger M, Feki A, Geiser T (2014) The secretome of induced pluripotent stem cells reduces lung fibrosis in part by hepatocyte growth factor. Stem Cell Res Ther 5:123

    Article  PubMed Central  PubMed  Google Scholar 

  40. Goldschmidt E, Hem S, Ajler P, Ielpi M, Loresi M, Giunta D, Carrizo A, Yampolsky C, Argibay P (2013) A new model for dura mater healing: human dural fibroblast culture. Neurol Res 35:300–307

    Article  CAS  PubMed  Google Scholar 

  41. Varodayan FP, Zhu XJ, Cui XN, Porter BE (2009) Seizures increase cell proliferation in the dentate gyrus by shortening progenitor cell-cycle length. Epilepsia 50:2638–2647

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Auld CA, Morrison RF (2006) Evidence for cytosolic p27(Kip1) ubiquitylation and degradation during adipocyte hyperplasia. Obesity (Silver Spring) 14:2136–2144

    Article  CAS  Google Scholar 

  43. Nagata S (1997) Apoptosis by death factor. Cell 88:3553–3565

    Article  Google Scholar 

  44. Feng R, Han J, Ziegler J, Yang M, Castranova V (2012) Apaf-1 deficiency confers resistance to ultraviolet-induced apoptosis in mouse embryonic fibroblasts by disrupting reactive oxygen species amplification production and mitochondrial pathway. Free Radic Biol Med 52:889–897

    Article  CAS  PubMed  Google Scholar 

  45. Rotem-Dai N, Oberkovitz G, Abu-Ghanem S, Livneh E (2009) PKCeta confers protection against apoptosis by inhibiting the pro-apoptotic JNK activity in MCF-7 cells. Exp Cell Res 315:2616–2623

    Article  CAS  PubMed  Google Scholar 

  46. Chiou HL, Hsieh YS, Hsieh MR, Chen TY (2006) HCV E2 may induce apoptosis of Huh-7 cells via a mitochondrial-related caspase pathway. Biochem Biophys Res Commun 345:453–458

    Article  CAS  PubMed  Google Scholar 

  47. Sobral LM, Bufalino A, Lopes MA, Graner E, Salo T, Coletta RD (2011) Myofibroblasts in the stroma of oral cancer promote tumorigenesis via secretion of activin A. Oral Oncol 47(9):840–846

    Article  CAS  PubMed  Google Scholar 

  48. Yu J, Ye J, Liu X, Han Y, Wang C (2011) Protective effect of l-carnitine against H2O2-induced neurotoxicity in neuroblastoma (SH-SY5Y) cells. Neurol Res 33:708–716

    Article  CAS  PubMed  Google Scholar 

  49. Glover KP, Markell LK, Donner EM, Han X (2014) Protein kinase C-activating tumor promoters modulate the DNA damage response in UVC-irradiated TK6 cells. Toxicol Lett 229:210–219

    Article  CAS  PubMed  Google Scholar 

  50. Kim HS, Lee JH, Park HS, Lee GS, Kim HW, Ha KT, Kim BJ (2015) Schizandra chinensis extracts induce apoptosis in human gastric cancer cells via JNK/p38 MAPK activation and the ROS-mediated/mitochondria-dependent pathway. Pharm Biol 53:212–219

    Article  PubMed  Google Scholar 

  51. Chathoth S, Thayyullathil F, Hago A, Shahin A, Patel M, Galadari S (2009) UVC-induced apoptosis in Dubca cells is independent of JNK activation and p53(Ser-15) phosphorylation. Biochem Biophys Res Commun 383:426–432

    Article  CAS  PubMed  Google Scholar 

  52. Fritsch RM, Schneider G, Saur D, Scheibel M, Schmid RM (2007) Translational repression of MCL-1 couples stress-induced eIF2 alpha phosphorylation to mitochondrial apoptosis initiation. J Biol Chem 282:22551–22562

    Article  CAS  PubMed  Google Scholar 

  53. Kostic I, Toffoletto B, Toller M, Beltrami CA, Ambesi-Impiombato FS, Curcio F (2010) UVC radiation-induced effect on human primary thyroid cell proliferation and HLA-DR expression. Horm Metab Res 42:846–853

    Article  CAS  PubMed  Google Scholar 

  54. Earnshaw WC, Martins LM, Kaufmann SH (1999) Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Annu Rev Biochem 68:383–424

    Article  CAS  PubMed  Google Scholar 

  55. Li Y, Zhang JF, Zhang YM, Ma XB (2009) The protective effect of genistein postconditioning on hypoxia/reoxygenation-induced injury in human gastric epithelial cells. Acta Pharmacol Sin 30:576–581

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Yuan Y, Peng C, Li K, Hussain M, Sikharam C, Guthikonda M, Ding Y (2012) Ethanol reduces expression of apoptotic proteins after hypoxia/reoxygenation in a brain slice model. Neurol Res 34(4):373–378

    Article  CAS  PubMed  Google Scholar 

  57. Wang Z, An LJ, Duan YL, Li YC, Jiang B (2008) Catalpol protects rat pheochromocytoma cells against oxygen and glucose deprivation-induced injury. Neurol Res 30:106–112

    Article  PubMed  Google Scholar 

  58. Qiu J, Zhou XY, Zhou XG, Cheng R, Liu HY, Li Y (2013) Neuroprotective effects of microRNA-210 on hypoxic-ischemic encephalopathy. Biomed Res Int 2013:350419

    PubMed Central  PubMed  Google Scholar 

  59. Pyle AD, Lock LF, Donovan PJ (2006) Neurotrophins mediate human embryonic stem cell survival. Nat Biotechnol 24:344–350

    Article  CAS  PubMed  Google Scholar 

  60. Ogawa T, Yogo K, Ishida N, Takeya T (2003) Synergistic effects of activin and FSH on hyperphosphorylation of Rb and G1/S transition in rat primary granulosa cells. Mol Cell Endocrinol 210:31–38

    Article  CAS  PubMed  Google Scholar 

  61. Yasuda M, Yamamoto M, Ochiai H, Eguchi Y, Arishima K (2007) Effects of growth factors on development of fetal islet B-cells in vitro. J Vet Med Sci 69:807–811

    Article  CAS  PubMed  Google Scholar 

  62. Krieglstein K, Suter-Crazzolara C, Fischer WH, Unsicker K (1995) TGF-beta superfamily members promote survival of midbrain dopaminergic neurons and protect them against MPP + toxicity. EMBO J 14:736–742

    PubMed Central  CAS  PubMed  Google Scholar 

  63. Komura M, Komura H, Konishi K, Ishimaru T, Hoshi K, Takato T, Tabata Y, Iwanaka T (2014) Promotion of tracheal cartilage growth by intra-tracheal injection of basic fibroblast growth factor (b-FGF). J Pediatr Surg 49:296–300

    Article  PubMed  Google Scholar 

  64. Feng Y, Dai X, Li X, Wang H, Liu J, Zhang J, Du Y, Xia L (2012) EGF signalling pathway regulates colon cancer stem cell proliferation and apoptosis. Cell Prolif 45:413–419

    Article  CAS  PubMed  Google Scholar 

  65. Carvalho KA, Guarita-Souza LC, Rebelatto CL, Senegaglia AC, Hansen P, Mendonca JG, Cury CC, Francisco JC, Brofman PR (2004) Aneural culture of rat myoblasts for myocardial transplant. Transpl Proc 36:1023–1024

    Article  CAS  Google Scholar 

  66. Cetin N, Ball K, Gokden M, Cruz NF, Dienel GA (2003) Effect of reactive cell density on net [2-14C] acetate uptake into rat brain: labeling of clusters containing GFAP + - and lectin + -immunoreactive cells. Neurochem Int 42:359–374

    Article  CAS  PubMed  Google Scholar 

  67. Poon VK, Huang L, Burd A (2005) Biostimulation of dermal fibroblast by sublethal Q-switched Nd:YAG 532 nm laser: collagen remodeling and pigmentation. J Photochem Photobiol, B 81:1–8

    Article  CAS  Google Scholar 

  68. Sakai T, Inoue S, Otsuka T, Matsuyama TA, Saito T, Murakami M, Ota H, Katagiri T (2004) Cell cycle regulator expression after coronary stenting in humans. Jpn Heart J 45:133–145

    Article  CAS  PubMed  Google Scholar 

  69. Menetrey J, Kasemkijwattana C, Day CS, Bosch P, Vogt M, Fu FH, Moreland MS, Huard J (2000) Growth factors improve muscle healing in vivo. J Bone Joint Surg Br 82:131–137

    Article  CAS  PubMed  Google Scholar 

  70. Sumino Y, Hirata Y, Sato F, Mimata H (2007) Growth mechanism of satellite cells in human urethral rhabdosphincter. Neurourol Urodyn 26:552–561

    Article  CAS  PubMed  Google Scholar 

  71. Grant MB, Wargovich TJ, Ellis EA, Caballero S, Mansour M, Pepine CJ (1994) Localization of insulin-like growth factor I and inhibition of coronary smooth muscle cell growth by somatostatin analogues in human coronary smooth muscle cells. A potential treatment for restenosis? Circulation 89:1511–1517

    Article  CAS  PubMed  Google Scholar 

  72. Martins P, Schmitt F, Almeida H, Frazão JM (2008) Evaluation of parathyroid gland angiogenesis in chronic kidney disease associated with secondary hyperparathyroidism. Nephrol Dial Transpl 23:2889–2894

    Article  CAS  Google Scholar 

  73. Taléns-Visconti R, Bonora A, Jover R, Mirabet V, Carbonell F, Castell JV, Gómez-Lechón MJ (2007) Human mesenchymal stem cells from adipose tissue: differentiation into hepatic lineage. Toxicol In Vitro 21:324–329

    Article  PubMed  Google Scholar 

  74. Villageois P, Wdziekonski B, Zaragosi LE, Plaisant M, Mohsen-Kanson T, Lay N, Ladoux A, Peraldi P, Dani C (2011) Regulators of human adipose-derived stem cell self-renewal. Am J Stem Cells 1:42–47

    PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by National Natural Science Foundation of China (No. 81371689), collaborated grant for HK-Macao-TW of Ministry of Science and Technology (2012DFH30060) and Special Funds for Major Science and Technology Projects of Guangdong Province (2015B010125007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Su Chen.

Additional information

Rui-Ling Lian and Xiao-Ling Guo have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lian, RL., Guo, XL., Chen, JS. et al. Effects of induced pluripotent stem cells-derived conditioned medium on the proliferation and anti-apoptosis of human adipose-derived stem cells. Mol Cell Biochem 413, 69–85 (2016). https://doi.org/10.1007/s11010-015-2640-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-015-2640-7

Keywords

Navigation