Skip to main content
Log in

Explored a cryptic plasmid pSXM33 from Shewanella xiamenensis BC01 and construction as the shuttle vector

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Plasmids are essential tools for gene transfer and manipulation in many kinds of microorganisms, but they remain mysterious in the Shewanella species. Herein, a novel cryptic plasmid pSXM33 was isolated from marine bacterium Shewanella xiamenensis BC01 (SXM) and followed by sequencing and characterization through bioinformatics approaches. At first, the plasmid DNA was digested to relatively short fragments, sub-cloned into vector pMD19T-Simple and pBluescript SK(II), then transformed into Escherichia coli (E. coli) DH5α for sequencing. A full-length pSXM33 nucleotide sequence revealed 8,068 bp with GC content of 44%, containing 12 putative open reading frames (ORFs) and several unique restriction sites. Based on the annotation of sequences, ORF1 and ORF4 showed the highest similarity to the integrase, while ORF3, ORF7 and ORF8 encoded the replication protein RepB, plasmid stabilization protein and CopG family transcriptional regulator, respectively. The promoter prediction and tandem repeats analyses suggested 15 promoters and multiple tandem repeats. Moreover, pETSXM1 and pETSXM2 were successfully constructed as shuttle vectors for E. coli and Shewanella species, based on the repB from pSXM33 and a kanamycin resistance gene from vector pET28a(+) as a selective marker. These results provide a useful genetic tool for new insight into molecular level study of the Shewanella species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Huang, J. X., B. L. Sun, and X. B. Zhang (2010) Shewanella xiamenensis sp. nov., isolated from coastal sea sediment. Int. J. Syst. Evol. Microbiol. 60: 1585–1589.

    Article  CAS  Google Scholar 

  2. Nealson, K. H. and J. Scott (2006) Ecophysiology of the genus Shewanella. pp. 1133–1151. In: M. Dworkin, S. Falkow, E. Rosenberg, K.-H. Schleifer, and E. Stackebrandt (eds.). The prokaryotes: A Handbook on the Biology of Bacteria. Springer, NY, USA.

    Chapter  Google Scholar 

  3. Urrutia, M. M., E. E. Roden, and J. M. Zachara (1999) Influence of aqueous and solid-phase Fe(II) complexants on microbial reduction of crystalline iron(III) oxides. Environ. Sci. Technol. 33: 4022–4028.

    Article  CAS  Google Scholar 

  4. Pitts, K. E., P. S. Dobbin, F. Reyes-Ramirez, A. J. Thomson, D. J. Richardson, and H. E. Seward (2003) Characterization of the Shewanella oneidensis MR-1 decaheme cytochrome MtrA: Expression in Escherichia coli confers the ability to reduce soluble Fe (III) chelates. J. Biol. Chem. 278: 27758–27765.

    Article  CAS  Google Scholar 

  5. Fitzgerald, L. A., E. R. Petersen, B. J. Gross, C. M. Soto, B. R. Ringeisen, M. Y. El-Naggar, and J. C. Biffinger (2012) Aggrandizing power output from Shewanella oneidensis MR-1 microbial fuel cells using calcium chloride. Biosens. Bioelectron. 31: 492–498.

    Article  CAS  Google Scholar 

  6. Yang, Y., G. Sun, J. Guo, and M. Xu (2011) Differential biofilms characteristics of Shewanella decolorationis microbial fuel cells under open and closed circuit conditions. Bioresour. Technol. 102: 7093–7098.

    Article  CAS  Google Scholar 

  7. Tsai, M. S., H. L. You, Y. F. Tang, and J. W. Liu (2008) Shewanella soft tissue infection: Case report and literature review. Int. J. Infect. Dis. 12: 119–124.

    Article  Google Scholar 

  8. Dey, S., D. Bhattacharya, S. Roy, S. D. Nadgir, A. Patil, and S. D. Kholkute (2015) Shewanella algae in acute gastroenteritis. Ind. J. Med. Microbiol. 33: 172–175.

    Article  CAS  Google Scholar 

  9. Zong, Z. Y. (2011) Nosocomial peripancreatic infection associated with Shewanella xiamenensis. J. Med. Microbiol. 60: 1387–1390.

    Article  Google Scholar 

  10. Ng, I. S., T. T. Chen, R. Lin, X. Zhang, C. Ni, and D. Sun (2014) Decolorization of textile azo dye and Congo red by an isolated strain of the dissimilatory manganese-reducing bacterium Shewanella xiamenensis BC01. Appl. Microbiol.Biotechnol. 98: 2297–2308.

    Article  CAS  Google Scholar 

  11. Li, Y., I. S. Ng, X. Zhang, and N. Wang (2014) Draft genome sequence of the dye-decolorizing and nanowire-producing bacterium Shewanella xiamenensis BC01. Genome Announc. 2: pii: e00721–14.

    Google Scholar 

  12. Sota, M., H. Yano, J. M. Hughes, G. W. Daughdrill, Z. Abdo, L. J. Forney, and E. M. Top (2010) Shifts in the host range of a promiscuous plasmid through parallel evolution of its replication initiation protein. ISME J. 4: 1568–1580.

    Article  CAS  Google Scholar 

  13. Uchiya, K., H. Takahashi, T. Nakagawa, T. Yagi, M. Moriyama, T. Inagaki, K. Ichikawa, T. Nikai, and K. Ogawa (2015) Characterization of a Novel Plasmid, pMAH135, from Mycobacterium avium subsp. hominissuis. PLoS One. 10: e0117797.

    Google Scholar 

  14. Jeon, J. M., H. Park, H. M. Seo, J. H. Kim, S. K. Bhatia, G. Sathiyanarayanan, H. S. Song, S. H. Park, K. Y. Choi, B. I. Sang, and Y. H. Yang (2015) Isobutanol production from an engineered Shewanella oneidensis MR-1. Bioproc. Biosyst. Eng. 38: 2147–2154.

    Article  CAS  Google Scholar 

  15. Chen, T. T., Y. L. Zhou, I. S. Ng, C. S. Yang, and H. Y. Wang (2015) Formation and characterization of extracellular polymeric substance from Shewanella xiamenensis BC01 under calcium stimulation. J. Taiwan Inst. Chem. Eng. 57: 175–181.

    Article  CAS  Google Scholar 

  16. Fredrickson, J. K., M. F. Romine, A. S. Beliaev, J. M. Auchtung, M. E. Driscoll, T. S. Gardner, K. H. Nealson, A. L. Osterman, G. Pinchuk, J. L. Reed, D. A. Rodionov, J. L. Rodrigues, D. A. Saffarini, M. H. Serres, A. M. Spormann, I. B. Zhulin, and J. M. Tiedje (2008) Towards environmental systems biology of Shewanella. Nat. Rev. Microbiol. 6: 592–603.

    Article  CAS  Google Scholar 

  17. Yin, J., L. Sun, Y. Dong, X. Chi, W. Zhu, S. H. Qi, and H. Gao (2013) Expression of blaA underlies unexpected ampicillininduced cell lysis of Shewanella oneidensis. PLoS One. 8: e60460.

    Article  Google Scholar 

  18. Chiang, C. J., G. L. Yeh, P. T. Chen, T. H. Lin, T. H. Lin, W. S. Hwang, and Y. P. Chao (2014) Development of a genomic engineering tool in Saccharomyces cerevisiae. J. Taiwan Inst. Chem. Eng. 45: 24–31.

    Article  CAS  Google Scholar 

  19. Rachkevych, N., K. Sybirna, S. Boyko, Y. Boretsky, and A. Sibirny (2014) Improving the efficiency of plasmid transformation in Shewanella oneidensis MR-1 by removing ClaI restriction site. J. Microbiol. Methods. 99: 35–37.

    Article  CAS  Google Scholar 

  20. Nováková, J., A. Izsáková, T. Grivalský, C. Ottmann, and M. Farkašovský (2014) Improved method for high-efficiency electrotransformation of Escherichia coli with the large BAC plasmids. Folia Microbiol (Praha). 59: 53–61.

    Article  Google Scholar 

  21. Lee, C., J. Kim, S. G. Shin, and S. Hwang (2006) Absolute and relative QPCR quantification of plasmid copy number in Escherichia coli. J. Biotechnol. 123: 273–280.

    Article  CAS  Google Scholar 

  22. Kim, S. Y., C. G. Oh, Y. J. Lee, K. H. Choi, D. S. Shin, S. K. Lee, K. J. Park, H. Shin, M. S. Park, and J. H. Lee (2013) Sequence analysis of a cryptic plasmid pKW2124 from Weissella cibaria KLC140 and construction of a surface display vector. J. Microbiol. Biotechnol. 23: 545–554.

    Article  CAS  Google Scholar 

  23. Xi, X. D., J. Fan, Y. Hou, J. H. Gu, W. Shen, Z. Li, and Z. Cui (2013) Characterization of three cryptic plasmids from Lactobacillus plantarum G63 that was isolated from Chinese pickle. Plasmid 70: 321–328.

    Article  CAS  Google Scholar 

  24. Bennett, P. M. (2008) Plasmid encoded antibiotic resistance: Acquisition and transfer of antibiotic resistance genes in bacteria. Br. J. Pharmacol. 153: 347–357.

    Article  Google Scholar 

  25. Moritz, E. M. and P. J. Hergenrother (2007) Toxin-antitoxin systems are ubiquitous and plasmid-encoded in vancomycin-resistant enterococci. Proc. Natl. Acad. Sci. USA. 104: 311–316.

    Article  CAS  Google Scholar 

  26. Rosvoll, T. C., T. Pedersen, H. Sletvold, P. J. Johnsen, J. E. Sollid, G. S. Simonsen, L. B. Jensen, K. M. Nielsen, and A. Sundsfjord (2010) PCR-based plasmid typing in Enterococcus faecium strains reveals widely distributed pRE25-, pRUM-, pIP501-, and pHTbeta-related replicons associated with glycopeptide resistance and stabilizing toxin-antitoxin systems. FEMS Immunol. Med. Microbiol. 58: 254–268.

    Article  CAS  Google Scholar 

  27. Lee, H. J., H. M. Jin, M. S. Park, W. Park, E. L. Madsen, and C.O. Jeon (2015) Recovery of plasmid pEMB1, whose toxinantitoxin system stabilizes an ampicillin resistance-conferring ß-lactamase gene in Escherichia coli, from natural environments. Appl. Environ. Microbiol. 81: 40–47.

    Article  CAS  Google Scholar 

  28. Erauso, G., F. Lakhal, A. Bidault-Toffin, P. Le Chevalier, P. Bouloc, C. Paillard, and A. Jacq (2011) Evidence for the role of horizontal transfer in generating pVT1, a large mosaic conjugative plasmid from the clam pathogen, Vibrio tapetis. PLoS One. 6: e16759.

    Article  Google Scholar 

  29. Lee, C. T., I. T. Chen, Y. T. Yang, T. P. Ko, Y. T. Huang, J. Y. Huang, M. F. Huang, S. Lin, C. Y. Chen, S. S. Lin, D. V. Lightner, H. C. Wang, A. H. Wang, H. C. Wang, L. I. Hor, and C. F. Lo (2015) The opportunistic marine pathogen Vibrio parahaemolyticus becomes virulent by acquiring a plasmid that expresses a deadly toxin. Proc. Natl. Acad. Sci. USA. 112: 10798–10803.

    Article  CAS  Google Scholar 

  30. Milewska, K., G. Wegrzyn, and A. Szalewska-Palasz (2015) Transformation of Shewanella baltica with ColE1-like and P1 plasmids and their maintenance during bacterial growth in cultures. Plasmid 81: 42–49.

    Article  CAS  Google Scholar 

  31. Myers, C. R. and J. M. Myers (1997) Replication of plasmids with the p15A origin in Shewanella putrefaciens MR-1. Lett. Appl. Microbiol. 24: 221–225.

    Article  CAS  Google Scholar 

  32. Heidelberg, J. F., I. T. Paulsen, K. E. Nelson,, E. J. Gaidos, W. C. Nelson, T. D. Read, J. A. Eisen, and R. Seshadri (2002) Genome sequence of the dissimilatory metal ion-reducing bacterium Shewanella oneidensis. Nat. Biotechnol. 20: 1118–1123.

    Article  CAS  Google Scholar 

  33. Caro-Quintero, A., J. Auchtung, J. Deng, I. Brettar, M. Höfle, J. M. Tiedje, and K. T. Konstantinidis (2012) Genome sequencing of five Shewanella baltica strains recovered from the oxic-anoxic interface of the Baltic Sea. J. Bacteriol. 194: 1263.

    Article  Google Scholar 

  34. Aguilar-Barajas, E., E. Paluscio, C. Cervantes, and C. Rensing (2008) Expression of chromate resistance genes from Shewanella sp. strain ANA-3 in Escherichia coli. FEMS Microbiol. Lett. 285: 97–100.

    CAS  Google Scholar 

  35. Werbowy, K., H. Cieoeliñski, and J. Kur (2009) Characterization of a cryptic plasmid pSFKW33 from Shewanella sp. 33 B. Plasmid 62: 44–49.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I-Son Ng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Ng, IS. Explored a cryptic plasmid pSXM33 from Shewanella xiamenensis BC01 and construction as the shuttle vector. Biotechnol Bioproc E 21, 68–78 (2016). https://doi.org/10.1007/s12257-015-0618-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-015-0618-7

Keywords

Navigation