Skip to main content
Log in

Investigations in fungal solubilization of coal: Mechanisms and significance

  • Review Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Fungi are the most important organisms which are involved in the degradation and solubilization of different types of coal. The mechanism of coal degradation and solubilization involves different oxidizing and nonoxidizing enzymes, chelators, alkaline substances and surfactants. This review intends to highlight the advancements in the biotechnological processing of coal and summarizes the recent knowledge regarding the mechanisms involved in fungal solubilization of coal especially the low rank lignite coal which is a natural raw material of enormous amounts and of great value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schilling, H. D. (1997) Long-term perspectives for coal-energy needs versus environment protection. Erdol. Erdgas Kohle 113: 346–348.

    CAS  Google Scholar 

  2. Juwarkar, A. A. and H. P. Jambhulkar (2008) Phytoremediation of coal mine spoil dump through integrated biotechnological approach. Biores.Technol. 99: 4732–4741.

    Article  CAS  Google Scholar 

  3. Lumpkin, R. E. (1988) Recent progress in the direct liquification of coal. Science 239: 873–877.

    Article  CAS  Google Scholar 

  4. Dong, L. H., Q. Yuan, and H. L. Yuan (2006) Changes of chemical properties of humic acids from crude and fungal transformed lignite. Fuel 85: 2402–2407.

    Article  CAS  Google Scholar 

  5. Kulikova, N. A., E. V. Stepanova, and O. V. Koroleva (2005) Mitigating Activity of humic substances: Direct influence on biota, in Use of humic substances to remediate polluted environments: From theory to practice. NATO Science Series: IV. Environ. Earth Sci. 52: 285–309.

    Google Scholar 

  6. Hatcher, P. G., I. A. Breger, N. Szeverenyi, and G. E. Maciel (1982) Nuclear magnetic resonance studies of ancient buried wood-II. Observations on the origin of coal from lignite to bituminous coal. Organic Geochem. 4: 9–18.

    Article  CAS  Google Scholar 

  7. Fakoussa, R. M. and M. Hofrichter (1999) Biotechnology and microbiology of coal degradation. Appl. Microbiol. Biotechnol. 52: 25–40.

    Article  CAS  Google Scholar 

  8. Hatcher, P. G., I. A. Breger, N. Szeverenyi and G. E. Maciel (1982) Nuclear magnetic resonance studies of ancient buried wood-II. Observations on the origin of coal from lignite to bituminous coal. Organic Geochem. 4: 9–18.

    Article  CAS  Google Scholar 

  9. The New Encyclopaedia Britannica (1992) Encyclopaedia Britannica Inc., Chicago.

    Google Scholar 

  10. Xu, X. C., C. H. Chen, H. Y. Qi, R. He, C. F. You, and G. M. Xiang (2000) Development of coal combustion pollution control for SO2 and NOx in China. Fuel Proc. Technol. 62: 153–160.

    Article  CAS  Google Scholar 

  11. European Commission (1995) Coal can be green. EC Directorate General for Energy, Thermie Programme, Brussels.

    Google Scholar 

  12. PETC Review (1991) Liquid transportation fuels from coal: In PETC review. Pittsburgh Energy Technology Center, Office of Fossil Energy, United States Department of Energy, Pittsburgh.

    Google Scholar 

  13. Machnikowska, H., K. Pawelec, and A. Podgoska (2002) Microbial degradation of low rank coals. Fuel Proc. Technol. 77–78: 17–23.

    Article  Google Scholar 

  14. Fakoussa, R. M. (1981) Coal as a substrate for microorganisms: Investigation with microbial conversion of national coals. Ph.D. Thesis, Friedrich-Wilhelms University, Bonn.

    Google Scholar 

  15. Cohen, M. S. and P. D. Gabriele (1982) Degradation of coal by the fungi polyporous versicol or and poria placenta. Appl. Environ. Microbiol. 44: 23–27.

    CAS  Google Scholar 

  16. Faison, B. D. (1992) In Biotransformations of Low Rank Coals. pp. 1–26. CRC Press, Boca Raton, FL.

    Google Scholar 

  17. Quigley, D. R. (1992) In Biotransformations of Low Rank Coals. pp. 27–63. CRC Press, Boca Raton, FL.

    Google Scholar 

  18. Laborda, F., I. F. Monistrol, N. Luna, and M. Fernandez (1999) Processes of liquefaction/solubilization of Spanish coals by microorganisms. Appl. Microbiol. Biotechnol. 52: 49–56.

    Article  CAS  Google Scholar 

  19. Hofrichter, M. and R. Fakoussa (2001) Microbial degradation and modification of coal, in Lignin, humic substances and coal. pp. 393–427. vol 1. Wiley–VCH, Weinheim.

    CAS  Google Scholar 

  20. Grinhut, T., Y. Hadar, and Y. Chen (2007) Degradation and transformation of humic substances by saprotrophic fungi: Processes and mechanisms. Fungal Biol. Rev. 21: 179–189.

    Article  Google Scholar 

  21. Kraus, U., M. Schmidt, and Ch. Lohrer (2006) A numerical model to simulate smouldering fires in bulk materials and dust deposits. J. Loss Prevent. Proc. Indus. 19: 218–226.

    Article  Google Scholar 

  22. Fuchtenbusch, A. and A. Steinbuchel (1999) Biosynthesis of polyhydroxyalkanoates from low-rank coal liquefaction products by Pseudomonas oleovorans and Rhodococcus ruber. Appl. Microbiol. Biotechnol. 52: 91–95.

    Article  CAS  Google Scholar 

  23. Kirk, T. K. and R. L. Farrell (1987) Enzymatic “Combustion: The microbial degradation of lignin. Annual Rev. Microbiol. 41: 465–505.

    Article  CAS  Google Scholar 

  24. Zimmermann, W. (1990) Degradation of lignin by bacteria. J. Biotechnol. 13: 119–130.

    Article  CAS  Google Scholar 

  25. Spiker, J. K., D. L. Crawford, and E. C. Thiel (1992) Oxidation of phenolic and non-phenolic substrates by the lignin peroxidase of Streptomyces viridosporus T7 A. Appl. Microbiol. Biotechnol. 37: 518–523.

    Article  CAS  Google Scholar 

  26. Kulikova, N. A., E. V. Stepanova, and O. V. Koroleva (2005) Mitigating activity of humic substances: Direct influence on biota. Use of Humic Substances to Remediate Polluted Environments: From Theory to Practice. NATO Science Series 52: 285–309.

    Article  Google Scholar 

  27. Yuan, H. L., J. S. Yang, F. Q. Wang, and W. X. Chen (2006) Degradation and solubilization of Chinese lignite by Penicillium sp. P6. Appl. Biochem. Microbiol. 42: 52–55.

    Article  CAS  Google Scholar 

  28. Crawford, D. L. and R. K. Gupta (1992) Microbial depolymerization of coal, in microbial transformation of low rank coals. pp. 171–211. CRC Press, Boca Raton, Florida.

    Google Scholar 

  29. Strandberg, G. W. and S. N. Lewis (1987) A method to enhance the microbial liquefaction of lignite coals. Biotechnol. Bioeng. Symp. 17: 153.

    Google Scholar 

  30. Cohen, M. S., W. C. Bowers, H. Aronson, and E. T. Gray (1987) Cell-free solubilization of coal by Polyporus versicolor. Appl. Environ. Microbiol. 53: 2840–2843.

    CAS  Google Scholar 

  31. Priest, F. G. (1984) Extracellular enzymes: In Aspects of microbiology. pp. 1–16. Van Nostrand Reinhold, U. K. Co. Ltd. Berkshire, England.

    Google Scholar 

  32. Boyle, D. C., R. B. Kropp, and D. I. Reid (1992) Solubilization and mineralization of lignin by white rot fungi. Appl. Environ. Microbiol. 58: 3217–3224.

    CAS  Google Scholar 

  33. Stewart, D. L., B. L. Thomas, R. M. Bean, and J. K. Fredrickson (1990) Colonization and degradation of oxidized bituminous and lignite coals by fungi. J. Indus. Microbiol. 6: 53–58.

    Article  CAS  Google Scholar 

  34. Ralph, J. P. and D. E. A. Catcheside (1994) Decolourisation and depolymerisation of solubilized low-rank coal by the white rot basidiomycete Phanerochaete chrysosporium. Appl. Microbiol. Biotechnol. 42: 536–542.

    Article  CAS  Google Scholar 

  35. Ralph, J. P., I. A. Graham, and D. E. A. Catcheside (1996) Extracellular oxidases and the transformation of solubilized low rank coal by wood-rot fungi. Appl. Microbiol. Biotechnol. 46: 226–232.

    Article  CAS  Google Scholar 

  36. Willmann, G. and R. M. Fakussaa (1997) Biological bleaching of water soluble macromolecules by a basidiomycete strain. Appl. Microbiol. Biotechnol. 47: 95–101.

    Article  CAS  Google Scholar 

  37. Gupta, R. K., L. A. Deobald, and D. L. Crawford (1990) Depolymerization of lignite coal by Pseudomonas strain 07. Appl. Biochem. Biotechnol. 24/25: 899–907.

    Article  Google Scholar 

  38. Faison, B. D. and S. N. Lewis (1989) Production of coal-solubilizing activity by Paecilomyces sp. during submerged growth in defined liquid media. Appl. Biochem. Biotechnol. 20/21: 743–752.

    Article  Google Scholar 

  39. Holker, U. (1998) Mechanismen der verflussigung von rheinischer Braunkohle durch Pilze—Ein Vergleich der Deuteromyceten Fusarium oxysporum und Trichoderma atroviride. Ph.D. Thesis, University of Bonn.

    Google Scholar 

  40. Gotz, G. K. E., P. Frost and R. M. Fakoussa (1997) Investigation on the bisolubilization of brown coal using pyrolysis-gas chromatography-mass spectrometry and in situ-alkylation with tetraethylammonium hydroxide (TEAH). In: Ziegler, A., Heek, K. H. V., Klein, J., Wanzl, W (Eds) Proceedings of the 9th International Conference on Coal Science, 7–12, Essen Germany, Vol 3. Druck, Essen. pp. 1669–1672.

    Google Scholar 

  41. Klein, J. (1999) Biological processing of fossil fuels. Appl. Microbiol. Biotechnol. 52: 2–15.

    Article  CAS  Google Scholar 

  42. Cohen, M. S. and P. D. Gabriele (1982) Degradation of coal by the fungi Polyporus versicolor and Poria monticola. Appl. Environ. Microbiol. 44: 23–27.

    CAS  Google Scholar 

  43. Ward, B. (1985) Lignite-degrading fungi isolated from a weathered outcrop. Systematic Appl. Microbiol. 6: 236–238.

    Article  Google Scholar 

  44. Scott, C. D., G. W. Strandberg, and S. N. Lewis (1986) Microbial solubilization of coal. Biotechnol. Prog. 2: 131–139.

    Article  CAS  Google Scholar 

  45. Gupta, K. R., K. J. Spiker,, and D. L. Crawford (1988) Biotransformation of coal by ligninolytic Streptomyces. Can. J. Microbiol. 34: 667–674.

    Article  CAS  Google Scholar 

  46. Quigley, D. R., B. Ward, D. L. Grawfordd, H. J. Hatcher, and P. R. Dugar (1989) Evidence that microbially produced alkaline materials are involved in coal biosolubilization. Appl. Biochem. Biotechnol. 20/21: 753–763.

    Article  Google Scholar 

  47. Faison, B. D. and S. N. Lewis (1989) Production of coal solubilizing activity by Paecilomyces sp. During submerged growth in defined liquid media. Appl. Biochem. Biotechnol. 20: 743–752.

    Article  Google Scholar 

  48. Raeder, U. and P. Broda (1984) Comparison of the lignin-degrading white-rot fungi Phanerochaete chrysosporium and Sporotrichum pulverulentum at the DNA level. Curr. Genet. 8: 499–506.

    Article  CAS  Google Scholar 

  49. Strandberg, G. W. and S. N. Lewis (1987) The Solubilization of Coal by an Extracellular Product from Streptomyces Setonii 75Vi2. J. Indus. Microbiol. 1: 371–375.

    Article  CAS  Google Scholar 

  50. Achi, O. K. (1994) Growth and coal-solubilizing activity of Penicillium simplicissimum on coal-related aromatic compounds. Biores. Technol. 48: 53–57.

    Article  CAS  Google Scholar 

  51. Torzilli, A. P. and J. D. Isbister (1994) Comparison of coal solubilization by bacteria and fungi. Biodegradation 5: 55–62.

    CAS  Google Scholar 

  52. Polman, J. K., D. L. Stoner, and K. M. Delezene-Briggs (1994) Bioconversion of coal, lignin and dimethoxybenzyl alcohol by Penicillium citrinum. J. Indus. Microbiol. 13: 292–299.

    Article  CAS  Google Scholar 

  53. Hölker, U. S. Ludwig, T. Scheel, and M. Höfer (1999) Mechanisms of coal solubilization by the deuteromycetes Trichoderma atroviride and Fusarium oxysporum. Appl. Microbiol. Biotechnol. 52: 57–59.

    Article  Google Scholar 

  54. Hofrichter, M. and W. Fritche (1997) Depolymerization of low rank coal by extracellular fungal enzyme systems. II. The ligninolytic enzymes of the coal-humic-acid-degrading fungus Nematoloma frowardii b19.Appl. Microbiol. Biotechnol. 47: 419–424.

    Article  CAS  Google Scholar 

  55. Hofrichter, M. and W. Fritsche (1997) Depolymerization of lowrank coal by extracellular fungal enzyme systems. 2. The ligninolytic enzymes of the coal-humic acid depolymerizing fungus Nematoloma forwardii b19. Fuel Energ. Abst. 38: 296.

    Google Scholar 

  56. Fakoussa, R. M. and P. J. Frost (1999) In vivo-decolorization of coalderived humic acids by laccase-excreting fungus Trametes versicolor. Appl. Microbiol. Biotechnol. 52: 60–65.

    Article  CAS  Google Scholar 

  57. Gotz, G. K. E. and R. M. Fakoussa (1999) Fungal biosolubilization of Rhenish brown coal monitored by Curie point pyrolysis/gas chromatography/mass spectrometry using tetraethylammonium hydroxide. Appl. Microbiol. Biotechnol. 52: 41–48.

    Article  CAS  Google Scholar 

  58. Wunderwald, U., G. Kreisel, M. Braun, M. Schulz, C. Jager, and M. Hofrichter (2000) Formation and degradation of a synthetic humic acid derived from 3-fluorocatechol. Appl. Microbiol. Biotechnol. 53: 441–446.

    Article  CAS  Google Scholar 

  59. Yanagi, Y., S. Hamaguchi, H. Tamaki, T. Suzuki, H. Otsuka, and N. Fujitake (2003) Relation of chemical properties of soil humic acids to decolorization by white rot Fungus-Coriolus consors. Soil Sci. Plant Nutrri. 49: 201–206.

    Article  CAS  Google Scholar 

  60. Steffen, K. T., A. Hatakka, and M. Hofrichter (2002) Degradation of humic acids by the litter-decomposing basidiomycete Collybia dryophila. Appl. Environ. Microbiol. 68: 3442–3448.

    Article  CAS  Google Scholar 

  61. Yanagi, Y., H. Tamaki, H. Otsuka, and N. Fujitake (2002) Comparison of decolorization by microorganisms of humic acids with different 12C NMR properties. Soil Biol. Biochem. 34: 729–731.

    Article  CAS  Google Scholar 

  62. Belcarz, A., G. Ginalska, and T. Kornillowicz-Kowalska (2005) Extracellular enzyme activities of Bjerkandera adusta R59 soil strain, capable of daunomycin and humic acids degradation. Appl. Microbiol. Biotechnol. 68: 686–694.

    Article  CAS  Google Scholar 

  63. Kluczek-Turpeinen, B., P. Maijala, M. Tuomela, M. Hofrichter, and A Hatakka (2005) Endoglucanase activity of compost-dwelling fungus Paecilomyces inflatus is stimulated by humic acids and other low molecular mass Aromatics. World J. Microbiol. Biotechnol. 21: 1603–1609.

    Article  CAS  Google Scholar 

  64. Rezácová, V. and M. Gryndler (2006) Fluorescence spectroscopy: A tool to characterize humic substances in soil colonized by microorganisms? Folia Microbiol. 51: 215–221.

    Article  Google Scholar 

  65. Igbinigie, E. E., S. Atkins, Y. van Breugel, S. van Dyke, M. T. Davies-Coleman, and P. Rose (2008) Fungal biodegradation of hard coal by a newly reported isolate, Neosartorya fischeri. Biotechnol. J. 3: 1407–1416.

    Article  CAS  Google Scholar 

  66. Lynch, M. D. J. and R. G. Thorn (2006) Diversity of basidiomycetes in Michigan agricultural soils. Appl. Environ. Microbiol. 72: 7050–7056.

    Article  CAS  Google Scholar 

  67. Kersten, P. and D. Cullen (2007) Extracellular oxidative systems of the lignin-degrading Basidiomycete Phanerochaete chrysosporium. Fungal Genet. Biol. 44: 77–87.

    Article  CAS  Google Scholar 

  68. Zavarzina, A. G., A. A. Leontievsky, L. A. Golovleva, and S. Y. Trofimov (2004) Biotransformation of soil humic acids by blue laccase of Panus tigrinus 8/18: An In vitro study. Soil Biol. Biochem. 36: 359–369.

    Article  CAS  Google Scholar 

  69. Steffen, K. T., A. Hatakka, and M. Hofrichter (2002) Degradation of humic acids by the litter-decomposing Basidiomycete Collybia dryophila. Appl. Environ. Microbiol. 68: 3442–3448.

    Article  CAS  Google Scholar 

  70. Hölker, U., S. Ludwig, T. Scheel, and M. Höfer (1999) Mechanisms of coal solubilization by the deuteromycetesTrichoderma atroviride and Fusarium oxysporum. Appl. Microbiol. Biotechnol. 52: 57–59.

    Article  Google Scholar 

  71. Tao, X. X., H. Chen, K. Y. Shi, and Z. P. Lv (2010) Identification and biological characteristics of a newly isolated fungus Hypocrea lixii and its role in lignite bioconversion. African J. Microbiol. Res. 4: 1842–1847.

    CAS  Google Scholar 

  72. Igbinigie, E. E., C. C. Z. Mutambanengwe, and P. D. Rose (2010) Phyto-bioconversion of hard coal in the Cynodon dactylon/coal rhizosphere. Biotechnol J. 5: 292–303.

    Article  CAS  Google Scholar 

  73. Yin, S., X. Tao, and K. Shi (2011) The role of surfactants in coal bio-solubilisation. Fuel Proc. Technol. 92: 1554–1559.

    Article  CAS  Google Scholar 

  74. Cohen, M. S., K. A. Feldman, C. S. Brown, and E. T. Gray (1990) Isolation and identification of the coal solubilizing agent produced by Trametes versicolor. Appl. Environ. Microbiol. 56: 3285–3294.

    CAS  Google Scholar 

  75. Dutton, M. V., C. S. Evans, P. T. Atkey, and D. A. Wood (1993) Oxalate production by Basidiomycetes, including the white-rot species Coriolus versicolor and Phanerochaete chrysosporium. Appl. Microbiol. Biotechnol. 39: 5–10.

    Article  CAS  Google Scholar 

  76. Barr, D. B. and S. D. Aust (1994) Mechanisms white rot fungi use to degrade pollutants. Environ. Sci. Technol. 28: 79A–87A.

    Article  Google Scholar 

  77. Holker, U. and M. Hofer (2002) Solid substrate fermentation of lignite by the coal solubilizing mould, Trichoderma atroviride, in a new type of bioreactor. Biotechnol. Lett. 2: 1643–1645.

    Article  Google Scholar 

  78. Silva-Stenico, M. E., C. J. Vengadajellum, H. A. Janjua, S. T. Harrison, S. G. Burton, and D. A. Cowan (2007) Degradation of low rank coal by Trichoderma atroviride ES11. J. Indus. Microbiol. Biotechnol. 34: 625–631.

    Article  CAS  Google Scholar 

  79. Perez, J., J. Munoz-Dorado, D. L. Rubia, and T. Martinez (2002) Biodegrdation and biological treatments of cellulose, hemicelluloses and lignin: An overview. Int. Microbiol. 5: 53–63.

    Article  CAS  Google Scholar 

  80. Hofrichter, M. (2002) Lignin conversion by manganese peroxidase (MnP). Enz. Microbiol. Technol. 30: 454–466.

    Article  CAS  Google Scholar 

  81. Baldrian, P. (2006) Fungal laccases — occurrence and properties. FEMS Microbiol. Rev. 30: 215–242.

    Article  CAS  Google Scholar 

  82. Kabe, Y., T. Osawa, A. Ishihara, and T. Kabe (2005) Decolorization of coal humic acid by extracellular enzymes produced by White-rot fungi. Coal Prep. 25: 211–220.

    Article  CAS  Google Scholar 

  83. Conesa, A., P. J. Punt, and C. A. M. Hondel (2002) Fungal peroxidases: Molecular aspects and applications. J. Biotechnol. 93: 143–158.

    Article  CAS  Google Scholar 

  84. Allard, B. (2006) A comparative study on the chemical composition of humic acids from forest soil, agricultural soil and lignite deposit; Bound lipid, carbohydrate and amino acid distributions. Geoderma. 130: 77–96.

    Article  CAS  Google Scholar 

  85. Selvi, A. V., R. Banerjee, L. C. Ram, and G. Singh (2009) Biodepolymerization studies of low rank Indian coals. World J. Microbiol. Biotechnol. 25: 1713–1720.

    Article  CAS  Google Scholar 

  86. Muller-Wegener, U. (1988) Interaction of humic substances with biota, in Humic Substances and Their Role in the Environment. pp. 179–192. John Wiley & Sons, NY, USA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Ghani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghani, M.J., Rajoka, M.I. & Akhtar, K. Investigations in fungal solubilization of coal: Mechanisms and significance. Biotechnol Bioproc E 20, 634–642 (2015). https://doi.org/10.1007/s12257-015-0162-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-015-0162-5

Keywords

Navigation