Skip to main content
Log in

Simultaneous improvements in the activity and stability of Candida antarctica lipase B through multiple-site mutagenesis

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

An enzyme with improved characteristics is required for biochemical processes to be economically feasible. In this study, improvements in both the stability and activity of Candida antarctica lipase B (CALB) were integrated through multiple-site mutagenesis. CALB was divided into two regions to optimize its performance. Modulating the flexibility within the substrate-binding region and the hydrophilic solvent-affecting region can enhance the catalytic activity and organic solvent stability of CALB, respectively. Combining the mutation sites from the substrate-binding region and from the hydrophilic solvent-affecting region yielded an enzyme (V139E,A92E) with improved functionality. These findings suggest that the characteristics of CALB can be augmented by modulating its flexibility, and this method can possibly be applied to other lipases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kim, H. S., Q. Q. T. Le, and Y. H. Kim (2010) Development of thermostable lipase B from Candida antarctica (CalB) through in silico design employing B-factor and RosettaDesign. Enz. Microb. Technol. 47: 1–5.

    Article  CAS  Google Scholar 

  2. Yu, H. and H. Huang (2014) Engineering proteins for thermostability through rigidifying flexible sites. Biotechnol. Adv. 32: 308–315.

    Article  CAS  Google Scholar 

  3. Park, H. J., Joo, J. C., Park, Y. H. Kim, and Y. J. Yoo (2013) Prediction of the solvent affecting site and the computational design of stable Candida antarctica lipase B in hydrophilic organic solvent. J. Biotechnol. 163: 346–352.

    Article  CAS  Google Scholar 

  4. Chen, Y. J., P. C. Tsai, C. H. Hsu, and C. Y. Lee (2014) Critical residues of class II PHA synthase for expanding substrate specificity and enhancing the biosynthesis of polyhydroxyalkanoate. Enz. Microb. Technol. 56: 60–66.

    Article  CAS  Google Scholar 

  5. Hong, S. Y. and Y. J. Yoo (2013) Activity enhancement of Candida antarctica lipase B by flexibility modulation in helix region surrounding the active site. Appl. Biochem. Biotechnol. 170: 925–933.

    Article  CAS  Google Scholar 

  6. Bornscheuer, U. T. and R. J. Kazlauskas (2004) Catalytic promiscuity in biocatalysis: Using old enzymes to form new bonds and follow new pathways. Angew. Chem. Int. Ed. Engl. 43: 6032–6040.

    Article  CAS  Google Scholar 

  7. Yon, J. M., D. Perahia, and C. Ghélis (1998) Conformational dynamics and enzyme activity. Biochimie. 80: 33–42.

    Article  CAS  Google Scholar 

  8. Arnold, F. H., P. L. Wintrode, K. Miyazaki, and A. Gershenson (2001) How enzymes adapt: Lessons from directed evolution. Trends Biochem. Sci. 26: 100–106.

    Article  CAS  Google Scholar 

  9. Beadle, B. M. and B. K. Shoichet (2002) Structural bases of stability-function tradeoffs in enzymes. J. Mol. Biol. 321: 285–296.

    Article  CAS  Google Scholar 

  10. Trodler, P., J. Nieverler, M. Rusnak, R. D. Schmid, and J. Pleiss (2008) Rational design of a new one-step purification strategy of Candida antarctica lipase B by ion-exchange chromatography. J. Chromatogr. A. 1179: 161–167.

    Article  CAS  Google Scholar 

  11. Branford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram_quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254.

    Article  Google Scholar 

  12. Radivojac, P., Z. Obradovic, D. K. Smith, G. Zhu, S. Vucetic, C. J. Brown, J. D. Lawson, and A. K. Dunker (2004) Protein flexibility and intrinsic disorder. Protein Sci. 13: 71–80.

    Article  CAS  Google Scholar 

  13. Bhasharan, R. and P. K. Ponnuswamy (1988) Positional flexibilities of amino acid residues in globular proteins. Int. J. Pept. Protein Res. 32: 241–255.

    Article  Google Scholar 

  14. Painter, J. and E. A. Merritt (2006) TLSMD web server for the generation of multi-group TLS models. J. Appl. Cryst. 39: 109–111.

    Article  CAS  Google Scholar 

  15. Vriend, G. (1990) WHAT IF: A molecular modeling and drug design program. J. Mol. Graph. 8: 52.

    Article  CAS  Google Scholar 

  16. Klibanov, A. M. (1997) Why are enzymes less active in organic solvents than in water? Trends in Biotechnol. 15: 97–101.

    Article  CAS  Google Scholar 

  17. Broos, J., A. J. W. G. Visser, J. F. J. Engbersen, W. Verboom, A. van Hoek, and D. N. Reinhoudt (1995). Flexibility of enzymes suspended in organic solvents probed by time-resolved fluorescence anisotropy. Evidence that enzyme activity and enantioselectivity are directly related to enzyme flexibility. J. Am. Chem. Soc. 117: 12657–12663.

    Article  CAS  Google Scholar 

  18. Martinelle, M., M. Holmquist, and K. Hult (1995) On the interfacial activation of Candida antarctica lipase A and B as compared with Humicola lanuginosa lipase. Biochim. Biophys. Acta. 1258: 272–276.

    Article  Google Scholar 

  19. von Heijne, G. (1992) Membrane protein structure prediction: Hydrophobicity analysis and the ‘Positive Inside’ rule. J. Mol. Biol. 225: 487–494.

    Article  Google Scholar 

  20. Claros, M. G. and G. von Heijne (1994) TopPred II: An improved software for membrane protein structure predictions. CABIOS. 10: 685–686.

    CAS  Google Scholar 

  21. Lomize, M. A., A. L. Lomize, I. D. Pogozheva, and H. I. Mosberg (2006) OPM: Orientations of proteins in membranes database. Bioinformatics. 22: 623–625.

    Article  CAS  Google Scholar 

  22. Parthasarathy, S. and M. R. Murthy (2000) Protein thermal stability: Insights from atomic displacement parameters (B values). Protein Eng. 13: 9–13.

    Article  CAS  Google Scholar 

  23. Dosztányi, Z., V. Csizmók, P. Tompa, and I. Simon (2005) IUPred: Web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content. Bioinformatics. 21: 3433–3434.

    Article  Google Scholar 

  24. Garcia-Alles, L. F. and V. Gotor (1998) Alcohol inhibition and specificity studies of lipase B from Candida antarctica in organic solvents. Biotechnol. Bioeng. 59: 163–170.

    Article  CAS  Google Scholar 

  25. Goddard, R., J. Bosley, and B. Al-Duri (2000) Esterification of oleic acid and ethanol in plug flow (packed bed) reactor under supercritical conditions—Investigation of kinetics. J. Supercrit. Fluids. 18: 121–130.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Je Yoo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yagonia, C.F.J., Park, H.J., Hong, S.Y. et al. Simultaneous improvements in the activity and stability of Candida antarctica lipase B through multiple-site mutagenesis. Biotechnol Bioproc E 20, 218–224 (2015). https://doi.org/10.1007/s12257-014-0706-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-014-0706-0

Keywords

Navigation